Guidelines for Administering the GAA 2.0

The Georgia Alternate Assessment ensures that students with significant cognitive disabilities are given the opportunity to demonstrate achievement of the knowledge, concepts, and skills inherent in the grade-level general education standards.

These guidelines include a brief description of important assessment features that you may utilize when presenting GAA 2.0 assessment tasks to a student.

Prior to administering this assessment, Test Examiners must also review the Test Administration Manual (TAM) for comprehensive and detailed assessment and administration information.

Key Terms

- **Test Examiner Booklet**: this provides a standardized script for Test Examiners to follow when administering an assessment task. The information in the Test Examiner Booklet is designed for the Test Examiner only, and should not be seen by the student.

- **SAY/DO**: these statements are instructions for the Test Examiner to follow.

 SAY: statements are in bold and provide the exact text that will be read aloud by the Test Examiner.

 DO: statements provide instructions for what the Test Examiner needs to do during the administration.

 symbols provide instructions for the Test Examiner to present the next page in the Student Booklet.

- **Scaffolding**: this is support that is embedded in each task to increase a student’s ability to access various levels of complexity within a task. If the student does not respond as indicated in the Test Examiner Booklet or does not provide a response at all, additional scaffolding will be provided. All scaffolding instructions are included in this booklet and offer the student an additional opportunity to demonstrate what they know and can do.

- **Student Booklet**: this contains student facing assessment materials that include passages, graphics, and answer choices. The Student Booklet only contains the text and graphics that the student needs to answer the question. It does not contain the Test Examiner’s directions and administration information.
• **Answer Options:** these are labeled with A, B, or C. The answer options in the Student Booklet correspond with answer options that are provided in the Test Examiner Booklet. The Test Examiner should present answer options to the student in the same order they are presented in the Test Examiner Booklet.

• **Stopping Rule:** for students who do not have an observable response mode, the stopping rule provides a standardized procedure for Test Examiners to stop testing. The procedure for implementing the stopping rule is outlined in the Test Administration Manual (TAM).

Using the Test Examiner Booklet to Administer a Task

All tasks must be administered sequentially within a content area, and the scripted “SAY” and “DO” statements must be followed exactly.

The Test Examiner Booklet is designed to directly correspond to the Student Booklet. The text and graphics are presented in the same order in each book, allowing the Test Administrator to simply turn the pages of the Student Booklet as the corresponding text and graphics are presented. Test Examiners may also remove the pages from the Student Booklet to use during the assessment.

The parts of the Student Booklet are listed below. Information is provided to explain more about each part of the Student Booklet.

• **Scenario/Passage**
 Present and read the scenario or passage to the student.

 Examiner Option: The Student Booklet pages associated with the scenario or passage can be removed from the Student Booklet and left on the student’s work surface for reference during Part A, Part B, and Part C of the corresponding task.

 After all parts of the task are administered, remove the scenario or passage from the work surface entirely.

• **Parts A, B, and C**
 In the Test Examiner Booklet, any time there is a directive for the Test Examiner to point to something, particularly when administering the scaffolding, the corresponding graphic or text is to be presented to the student by turning the pages in the Student Booklet.

 Examiner Option: The Test Examiner may also remove pages along the perforated edges from the Student Booklet to be laid out to view along with the answer options, as needed.
Examiner Guidance: All pages from the Student Booklet that correspond with a given task part (A, B, C) must be removed from the student’s work surface before presenting the next part. For example, Student Booklet pages for Part A should be removed before introducing Part B.

Answer options should only be cut apart if there is a disability-based need to do so and the answer options must be shown to students in the order in which they appear (A, B, C) in the Test Examiner Booklet and in the Student Booklet. If answer options are cut from the Student Test Booklet, ensure that the answer option letters (A, B, C) and the identifier remain with each choice for accuracy in recording student responses and to closely track all materials for return.

- **Graphics and Illustrations**
 Examiners may read text that appears in graphics and illustrations from top to bottom, left to right.

- **Student Response**
 Students may answer questions with any mode of communication. However, they should use the same response mode that they use in the classroom for this assessment. During test administration, the Test Examiner will record the student’s responses on the Student Response Document. Once the assessment is complete, the Test Examiner will transcribe the student responses into Nextera, the online assessment system.
This page is intentionally left blank.
Scenario

SAY: We use groups of objects to help us multiply.

DO: Point to the plates.

SAY: Here are three plates.

![Image of three plates with two cookies each]

\[3 \times 2 = 6 \]

DO: Point to the two cookies on each plate.

SAY: Each plate has two cookies. There are three groups of two cookies.

DO: Point to \(3 \times 2 = 6\).

SAY: Three times two can help us find the total number of cookies. We can also show this with repeated addition.

DO: Point to the \(2 + 2 + 2 = 6\).

SAY: We can write two plus two plus two equals six. This also shows three groups of two.

\[2 + 2 + 2 = 6 \]

DO: Point to the six in each equation.

SAY: We get the same answer if we multiply or use repeated addition.
Part A. Low complexity/High support

DO: Point to the vases and two flowers in each vase.

SAY: James has four vases. Each vase has two flowers. We can use repeated addition to find the total number of flowers.

![Image of vases with flowers]

SAY: Show me the numbers you add to find how many flowers James has.

DO: Point to each answer option as you read it.

SAY: Four plus two. Two plus two plus two plus two.

A

\[4 + 2\]

B

\[2 + 2 + 2 + 2\]
If the student responds to Part A by selecting answer option B, record the student’s response and then present Part B.

If the student responds to Part A by selecting answer option A, record the student’s response, provide the scaffolding below, and then ask the question again.

If the student does not respond to Part A, record “no response,” provide the scaffolding below, and then ask the question again.

DO: Point to each vase and the flowers in that vase.

SAY: The first vase has two flowers, the second vase has two flowers, the third vase has two flowers, and the fourth vase has two flowers.

Show me the numbers you add to find how many flowers James has.

DO: Point to each answer option as you read it.

SAY: Four plus two. Two plus two plus two plus two.

Record the student’s response and then present Part B.

If the student does not respond, record “no response” and then present Part B.
Part B. Moderate complexity/Moderate support

DO: Point to the bowls of peaches.

SAY: Carly put some peaches into three bowls. Each bowl has four peaches.

![Image of bowls with peaches]

DO: Point to the multiplication expression.

SAY: We can use multiplication to find the total number of peaches Carly has. Three times four.

\[3 \times 4 \]

SAY: Show me the addition sentence that is the same as the total number of peaches in all three bowls.

DO: Point to each answer option as you read it.

SAY: Three plus four. Three plus three plus three. Four plus four plus four.
If the student responds to Part B by selecting answer option C, record the student’s response and then present **Part C**.

If the student responds to Part B by selecting answer option A or B, record the student’s response, provide scaffolding by covering the answer option that the student selected, and then ask the question again.

If the student does not respond to Part B, record “no response,” provide scaffolding by covering answer option B, and then ask the question again.
DO: Cover the answer option selected by the student OR answer option B if the student did not respond.

SAY: Show me the addition sentence that is the same as the total number of peaches in all three bowls.

DO: Point to the remaining answer options as you read them.

Record the student’s response and then present Part C.

If the student does not respond, record “no response” and then present Part C.
Part C. High complexity/Low support

DO: Point to each row of buttons.

SAY: Angela has some buttons. She puts them into three rows.

SAY: Show me the multiplication sentence to find the number of buttons Angela has.

DO: Point to each answer option as you read it.

SAY: Three times one equals blank. Three times three equals blank. Three times five equals blank.
If the student responds to Part C by selecting answer option C, record the student’s response and then present the next task.

If the student responds to Part C by selecting answer option A or B, record the student’s response, provide the scaffolding below, and then ask the question again.

If the student does not respond to Part C, record “no response,” provide the scaffolding below, and then ask the question again.
SAY: Remember, you have three groups. Each group has five buttons. Find the number sentence that shows the number of buttons. Show me the multiplication sentence to find the number of buttons Angela has.

DO: Point to each answer option as you read it.

SAY: Three times one equals blank. Three times three equals blank. Three times five equals blank.

Record the student’s response and then present the next task.

If the student does not respond, record “no response” and then present the next task.
Scenario

SAY: We use numbers and symbols for addition, subtraction, multiplication, and division to make a numerical expression. This is an expression.

DO: Point to each part of the first expression as you read.

SAY: Seven times ten plus four.

DO: Point to each part of the expression as you read.

SAY: Here is a problem: first, multiply five and two; then add one.

We use parentheses here to show that we are multiplying five and two first. Then, we add one.

Parenthesis five times two parenthesis plus one.

SAY: Multiply five and two, then add one.

(5 x 2) + 1
Part A. Low complexity/High support

SAY: Show me the expression that is the same as eight plus two.

Eight plus two.

DO: Point to each answer option.

<table>
<thead>
<tr>
<th>A</th>
<th>8 - 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>8 + 2</td>
</tr>
</tbody>
</table>

If the student responds to Part A by selecting answer option B, record the student’s response and then present Part B.

If the student responds to Part A by selecting answer option A, record the student’s response, provide the scaffolding below, and then ask the question again.

If the student does not respond to Part A, record “no response,” provide the scaffolding below, and then ask the question again.
SAY: Remember, plus means addition.

Show me the expression that is the same as eight plus two.

DO: Point to each answer option.

Record the student’s response and then present Part B.

If the student does not respond, record “no response” and then present Part B.
Part B. Moderate complexity/Moderate support

SAY: Show me which expression is the same as add seven and three, then multiply by two.

Add seven and three, then multiply by two.

DO: Point to each answer option.

A

\[(2 \times 7) + 3\]

B

\[(7 + 3) \times 2\]

C

\[(7 - 3) + 2\]
If the student responds to Part B by selecting answer option B, record the student’s response and then present Part C.

If the student responds to Part B by selecting answer option A or C, record the student’s response, provide scaffolding by covering the answer option that the student selected, and then ask the question again.

If the student does not respond to Part B, record “no response,” provide scaffolding by covering answer option C, and then ask the question again.

DO: Cover the answer option selected by the student OR answer option C if the student did not respond.

SAY: Show me the expression that is the same as add seven and three, then multiply by two.

DO: Point to the remaining answer options.

Record the student’s response and then present Part C.

If the student does not respond, record “no response” and then present Part C.
Part C. High complexity/Low support

SAY: Here is the quantity of ten plus three.

DO: Point to the expression as you read.

SAY: Parenthesis ten plus three parenthesis.

\[(10 + 3)\]

SAY: Show me which expression is fifteen times as large as the quantity of ten plus three.

DO: Point to each answer option.

A

\[3 + (15 \times 10)\]

B

\[10 + (3 \times 15)\]

C

\[15 \times (10 + 3)\]
If the student responds to Part C by selecting answer option C, record the student’s response and then present **the next task**.

If the student responds to Part C by selecting answer option A or B, record the student’s response, provide the scaffolding below, and then ask the question again.

If the student does not respond to Part C, record “no response,” provide the scaffolding below and then ask the question again.

DO: Point to the expression \(10 + 3\).

SAY: Remember, this is the quantity ten plus three. You are being asked to find the expression that is fifteen times as large as the quantity of ten plus three, so you need to multiply.

Show me which expression is fifteen times as large as the quantity of ten plus three.

DO: Point to each answer option.

Record the student’s response and then present **the next task**.

If the student does not respond, record “no response“ and then present **the next task**.
Scenario

SAY: Let’s divide fractions.

DO: Point to the shaded part and then to the whole rectangle as you read.

SAY: If we have one-half of a whole cake and want to divide it equally between two people, how much cake will each person get?

![Diagram of a whole cake divided into two equal parts](image)

SAY: We can show this with a picture.

DO: Point to the different parts of the rectangle as you read.

SAY: This shows a whole cake. The shaded and unshaded parts of the cake each show half of the cake.

DO: Point to the shaded portion.

SAY: We need to divide this half of the cake again to equally share it between two people.

![Diagram of a half-cake divided into four equal parts](image)
DO: Point to the equation as you read it.

SAY: This shows the equation one-half divided by two equals one-fourth.

\[
\frac{1}{2} \div 2 = \frac{1}{4}
\]

DO: Point to each part of the equation as you read.

SAY: We can find out how much one-half divided by two is by first changing the whole number to a fraction by placing the whole number two over one.

\[
\frac{1}{2} + \frac{2}{1} = \frac{1}{4}
\]

DO: Point to each part of the equation as you read.

SAY: Remember, when dividing by a fraction, you change the division sign to a multiplication sign and flip the fraction. So dividing by two is the same as multiplying by one-half.

\[
\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}
\]

SAY: We multiply the numerators (one times one equals one), then we multiply the denominators (two times two equals four). One-half times one-half equals one-fourth. Each person gets one-fourth of the whole cake.
Part A. Low complexity/High support

DO: Point to the rectangle and each smaller part as you read.

SAY: A whole cake is divided into eighths.

![Diagram of a cake divided into eight parts]

SAY: Show me the number of equal pieces.

DO: Point to each answer option as you read it.

SAY: Two. Eight.

![Answer options A and B with numbers 2 and 8]

If the student responds to Part A by selecting answer option B, record the student’s response and then present Part B.

If the student responds to Part A by selecting answer option A, record the student’s response, provide the scaffolding below, and then ask the question again.

If the student does not respond to Part A, record “no response,” provide the scaffolding below and then ask the question again.
Remember, we can find the number of pieces by counting the small boxes.

Show me the number of equal pieces.

Point to each answer option as you read it

Two. Eight.

Record the student’s response and then present Part B.

If the student does not respond, record “no response” and then present Part B.
Part B. Moderate complexity/Moderate support

DO: *Point to the three shaded pieces as you read.*

SAY: You have one-half of a cake and want to share it equally among three people.

DO: *Point to the equation as you read it.*

SAY: One-half divided by three equals blank?

\[
\frac{1}{2} \div 3 = __
\]

SAY: Show me what fraction of the cake each person will get.

DO: *Point to each answer option as you read it.*

SAY: One-half. One-third. One-sixth.

A

\[
\frac{1}{2}
\]

B

\[
\frac{1}{3}
\]

C

\[
\frac{1}{6}
\]
If the student responds to Part B by selecting answer option C, record the student’s response and then present Part C.

If the student responds to Part B by selecting answer option A or B, record the student’s response, provide scaffolding by covering the answer option that the student selected, and then ask the question again.

If the student does not respond to Part B, record “no response,” provide scaffolding by covering answer option B, and then ask the question again.

DO: Cover the answer option selected by the student OR answer option B if the student did not respond.

SAY: Show me what fraction of the cake each person will get.

DO: Point to the remaining answer options as you read them.

Record the student’s response and then present Part C.

If the student does not respond, record “no response” and then present Part C.
You have one-half of a cake. You cut that half into four equal pieces.

\[
\frac{1}{2} \div 4 = ____
\]

We can use this equation to help solve the problem.

Point to each part of the equation as you read it.

Show me what fraction of the whole cake each piece represents.

Point to each answer option as you read it.

One-half. One-fourth. One-eighth.
Remember, you can divide the model into four parts. Show me what fraction of the whole cake each piece represents.

Point to each answer option as you read it.

One-half. One-fourth. One-eighth.

Record the student’s response and then present the next task.

If the student does not respond, record “no response” and then present the next task.
Scenario

SAY: We use graphs and data to help us make inferences. An inference is something we can interpret or conclude from information. Look at the line plot.

DO: Point to the label and the key on the line plot.

SAY: We can infer that the favorite color is blue because there are more votes for blue.

DO: Point to the X’s for the blue votes.

Favorite Colors

```
Yellow  Blue  Orange  Green  Black
```

X = 1 vote
Part A. Low complexity/High support

SAY: Twelve students are asked what their favorite lunch is: a burger, nachos, or pizza.

DO: Point to the line plot and the X’s along each lunch option.

SAY: Here are the results shown in a line plot labeled Favorite Lunch. Each X equals one student. There are six X’s over burger, four X’s over nachos, and two X’s over pizza.

Favorite Lunch

X

X

X X

X X

X X X

X X X

Burger Nachos Pizza

Lunch

X = 1 student

SAY: Can we infer from these data that nachos are more popular than burgers?

DO: Point to each answer option as you read it.

SAY: Yes. No.
Remember, burger has six votes, which is more than nachos.

Can we infer from these data that nachos are more popular than burgers?

Point to each answer option as you read it.

Yes. No.

Record the student’s response and then present Part B.

If the student does not respond, record “no response” and then present Part B.
Part B. Moderate complexity/Moderate support

SAY: This line plot shows students’ favorite fruit.

DO: Point to the line plot as you read.

SAY: Each X equals one student. There are three X’s over banana, six X’s over peach, and one X over grapes.

Favorite Fruit

![Line plot showing favorite fruits]

-香蕉
-桃子
-葡萄

- = 1 student

SAY: Show me how many students chose banana.

DO: Point to each answer option as you read it.

SAY: One. Two. Three.
If the student responds to Part B by selecting answer option C, record the student’s response and then present Part C.

If the student responds to Part B by selecting answer option A or B, record the student’s response, provide scaffolding by covering the answer option that the student selected, and then ask the question again.

If the student does not respond to Part B, record “no response,” provide scaffolding by covering answer option A, and then ask the question again.

DO: Cover the answer option selected by the student OR answer option A if the student did not respond.

SAY: Show me how many students chose banana.

DO: Point to the remaining answer options as you read them.

Record the student’s response and then present Part C.

If the student does not respond, record “no response” and then present Part C.
Part C. High complexity/Low support

SAY: The data show the number of canned foods collected by three different grades each month for three months.

<table>
<thead>
<tr>
<th>Month</th>
<th>6th Grade Students</th>
<th>7th Grade Students</th>
<th>8th Grade Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct.</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Nov.</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Dec.</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

SAY: Show me which grade level shows an increase in the number of cans collected each month.

DO: Point to each answer option as you read it.

SAY: Sixth grade. Seventh grade. Eighth grade.
Remember, you can find the number of cans collected by each grade each month by looking at the data in the graph. We want to find which grade collected more cans in December than in November, and more cans in November than in October.

Show me which grade level showed an increase in the number of cans collected each month.

Point to each answer option as you read it.

Sixth grade. Seventh grade. Eighth grade.

Record the student’s response and then present the next task.

If the student does not respond, record “no response” and then present the next task.
Scenario

SAY: Let’s talk about perfect squares.

DO: Point to the square.

SAY: A perfect square has the same number of unit squares on each side.

DO: Point to and count the number of squares along the side.

SAY: There are one, two, and three squares on each side.

DO: Point to the square.

SAY: We count how many unit squares there are to find out the value of the perfect square.

DO: Point to and count each unit square.

SAY: One, two, three, four, five, six, seven, eight, and nine. The perfect square is nine.

DO: Point to the square root of nine.

\[\sqrt{9} \]

SAY: We can use the perfect square to find the square root of nine.
Point to the square with 9 unit squares.

This perfect square is made of nine unit squares.

Point to one side of the square.

One side of the square has three unit squares.

Point to the equation.

We say the square root of nine is three.

\[\sqrt{9} = 3 \]

We can also tell if a number is a perfect square without using unit squares. A number times itself equals a perfect square.

Point to and say each part of the equation.

Nine equals three times three. Nine is a perfect square because the number three times itself is nine.

\[9 = 3 \times 3 \]
Part A. Low complexity/High support

DO: Point to the four squares along the top and along the side.

SAY: A perfect square has the same number of unit squares on each side.

![Diagram of a grid of squares]

SAY: We can make a perfect square using sixteen squares.

DO: Point to one side of the square.

SAY: Show me how many unit squares are on one side.

![Diagram of answer options]

DO: Point to each answer option as you read it.

SAY: Four. Twelve.
If the student responds to Part A by selecting answer option A, record the student’s response and then present Part B.

If the student responds to Part A by selecting answer option B, record the student’s response, provide the scaffolding below, and then ask the question again.

If the student does not respond to Part A, record “no response,” provide the scaffolding below, and then ask the question again.

DO: Point to one side of the square.

SAY: Count how many unit squares are on one side. Show me how many unit squares are on one side.

DO: Point to each answer option as you read it.

SAY: Four. Twelve.

Record the student’s response and then present Part B.

If the student does not respond, record “no response” and then present Part B.
Part B. Moderate complexity/Moderate support

DO: Point to the square.

SAY: Let’s use twenty-five unit squares to make a perfect square.

DO: Point to the square root of 25.

SAY: What is the square root of twenty-five?

\[
\sqrt{25} = ___
\]

SAY: Show me the square root of twenty-five.

DO: Point to each answer option as you read it.

SAY: Five. Ten. Twenty-five.

A
\[
\begin{array}{c}
5
\end{array}
\]

B
\[
\begin{array}{c}
10
\end{array}
\]

C
\[
\begin{array}{c}
25
\end{array}
\]
If the student responds to Part B by selecting answer option A, record the student’s response and then present **Part C**.

If the student responds to Part B by selecting answer option B or C, record the student’s response, provide scaffolding by covering the answer option that the student selected, and then ask the question again.

If the student does not respond to Part B, record “no response,” provide scaffolding by covering answer option C, and then ask the question again.

DO: Cover the answer option selected by the student OR answer option C if the student did not respond.

SAY:
Show me the square root of twenty-five.

DO:
Point to the remaining answer options as you read them.

Record the student’s response and then present **Part B**.

If the student does not respond, record “no response” and then present **Part B**.
Part C. High complexity/Low support

SAY: Show me the number that is a perfect square.

DO: Point to each answer option as you read it.

SAY: Twelve. Seven. Thirty-six.

If the student responds to Part C by selecting answer option C, record the student’s response and then present **the next task**.

If the student responds to Part C by selecting answer option A or B, record the student’s response, provide the scaffolding below, and then ask the question again.

If the student does not respond to Part C, record “no response,” provide the scaffolding below, and then ask the question again.

SAY: Remember, a number times itself equals a perfect square. Which of these numbers has a single digit for a square root?

SAY: Show me the number that is a perfect square.

DO: Point to each answer option as you read it.

SAY: Twelve. Seven. Thirty-six.

Record the student’s response and then present **the next task**.

If the student does not respond, record “no response” and then present **the next task**.
Scenario

SAY: Sometimes it is important to know the volume of an object. Volume means the amount of space inside the object.

DO: Point to the cylinder.

SAY: Here is a cylinder.

![Cylinder Diagram](image)

Area of Base

Area of Base \times Height = Volume

DO: Point to the base of the cylinder and then the height of the cylinder.

SAY: You can find the volume of the cylinder by multiplying the area of the base by the height.

DO: Point to the two cylinders and numbers as you read.

SAY: Cylinder A has a height of two inches and the area of its base is eight square inches. Its volume is two times eight, or sixteen cubic inches. Cylinder B has a height of four inches and the area of its base is eight square inches. Its volume is four times eight, or thirty-two cubic inches.
Point to the numbers in the equation as you read them.

DO:

Thirty-two divided by sixteen equals two. The volume of cylinder B is two times greater than cylinder A.

\[32 \div 16 = 2\]

2 times greater
Part A. Low complexity/High support

SAY: Look at these cylinders.

![Cylinders](image)

Volume is 4 in.3 Volume is 4 in.3

DO: Point to the first cylinder.

SAY: This cylinder has a volume of four cubic inches.

DO: Point to the second cylinder.

SAY: This cylinder also has a volume of four cubic inches.

SAY: Show me the cylinder that has the same volume as the two cylinders together.

DO: Point to each answer option as you read it.

SAY: The cylinder with a volume of eight cubic inches. The cylinder with a volume of six cubic inches.
Both cylinders have a volume of four cubic inches so they have a volume of four plus four.

Show me the cylinder that has the same volume as the two cylinders together.

Point to each answer option as you read it.

The cylinder with a volume of eight cubic inches. The cylinder with a volume of six cubic inches.
Record the student’s response and then present Part B.

If the student does not respond, record “no response” and then present Part B.
Part B. Moderate complexity/Moderate support

DO: *Point to the two cylinders.*

SAY: *Here are two cylinders.*

SAY: *Show me which statement is correct.*

DO: *Point to each answer option as you read it.*

SAY: *The volume of Cylinder A is greater. The volume of Cylinder B is greater. The two cylinders have the same volume.*
A

The volume of Cylinder A is greater.

B

The volume of Cylinder B is greater.

C

The two cylinders have the same volume.

If the student responds to Part B by selecting answer option B, record the student’s response and then present Part C.

If the student responds to Part B by selecting answer option A or C, record the student’s response, provide scaffolding by covering the answer option that the student selected, and then ask the question again.

If the student does not respond to Part B, record “no response,” provide scaffolding by covering answer option A, and then ask the question again.
Cover the answer option selected by the student OR answer option A if the student did not respond.

Show me which statement is correct.

Point to the remaining answer options as you read them.

Record the student’s response and then present Part C.

If the student does not respond, record “no response” and then present Part C.
Part C. High complexity/Low support

DO: Point to Cylinder X.

SAY: This is Cylinder X.

![Cylinder X](image)

Height = 5 in.

Area of Base = 2 in.2

Cylinder X

SAY: Show me the cylinder with two times the volume of Cylinder X.

DO: Point to each answer option as you read it.

SAY: Cylinder A with a height of four inches and area of base two square inches. Cylinder B with a height of seven inches and area of base two square inches. Cylinder C with a height of ten inches and area of base two square inches.

A

![Cylinder A](image)

Height = 4 in.

Area of Base = 2 in.2

Cylinder A

B

![Cylinder B](image)

Height = 7 in.

Area of Base = 2 in.2

Cylinder B

C

![Cylinder C](image)

Height = 10 in.

Area of Base = 2 in.2

Cylinder C
If the student responds to Part C by selecting answer option C, record the student’s response and then present the next task.

If the student responds to Part C by selecting answer option A or B record the student’s response, provide the scaffolding below, and then ask the question again.

If the student does not respond to Part C, record “no response,” provide the scaffolding below, and then ask the question again.

SAY: Remember, if the bases are the same, two times the height would give you a volume that is two times greater. Show me the cylinder with two times the volume of Cylinder X.

DO: Point to each answer option as you read it.

SAY: Cylinder A with a height of four inches and area of base two square inches. Cylinder B with a height of seven inches and area of base two square inches. Cylinder C with a height of ten inches and area of base two square inches.

Record the student’s response and then present the next task.

If the student does not respond, record “no response” and then present the next task.

STOP

You have reached the end of the sample tasks.
This page is intentionally left blank.