Table of Contents

THE GEORGIA MILESTONES ASSESSMENT SYSTEM ... 3
 GEORGIA MILESTONES END-OF-COURSE (EOC) ASSESSMENTS 4
 ASSESSMENT GUIDE ... 5
TESTING SCHEDULE ... 6
TEST STRUCTURE ... 7
 DESCRIPTION OF TEST FORMAT AND ORGANIZATION 7
 CONTENT MEASURED ... 9
 ITEM TYPES .. 10
 DEPTH OF KNOWLEDGE DESCRIPTORS .. 12
SCORES ... 15
EXAMPLE ITEMS ... 16
ADDITIONAL SAMPLE ITEMS ... 20
 ADDITIONAL SAMPLE ITEM KEYS ... 41
 EXAMPLE SCORING RUBRICS AND EXEMPLAR RESPONSES 45
THE GEORGIA MILESTONES ASSESSMENT SYSTEM

The purpose of the Georgia Student Assessment Program is to measure student achievement of the state-adopted content standards and inform efforts to improve teaching and learning. Results of the assessment program are utilized to identify students failing to achieve mastery of content, to provide educators with feedback about instructional practice, and to assist school districts in identifying strengths and weaknesses in order to establish priorities in planning educational programs.

The State Board of Education is required by Georgia law (O.C.G.A. §20-2-281) to adopt assessments designed to measure student achievement relative to the knowledge and skills set forth in the state-adopted content standards. The Georgia Milestones Assessment System (Georgia Milestones) fulfills this requirement and, as a key component of Georgia’s Student Assessment Program, is a comprehensive summative assessment program spanning Grade 3 through high school. Georgia Milestones measures how well students have learned the knowledge and skills outlined in the state-adopted content standards in Language Arts, Mathematics, Science, and Social Studies. Students in grades 3 through 8 take an end-of-grade assessment in English Language Arts and Mathematics, while students in grades 5 and 8 also take an end-of-grade assessment in Science and Social Studies. High school students take an end-of-course assessment for each of the ten courses designated by the State Board of Education. In accordance with State Board Rule, Georgia Milestones end-of-course measures serve as the final exams for the specified high school courses.

The main purpose of Georgia Milestones is to inform efforts to improve student achievement by assessing student performance on the standards specific to each course or subject/grade tested. Specifically, Georgia Milestones is designed to provide students and their parents with critical information about the students’ achievement and, importantly, their preparedness for the next educational level. The assessment system is a critical informant of the state’s accountability measure, the College and Career Ready Performance Index (CCRPI), providing an important gauge about the quality of the educational services and opportunities provided throughout the state. The ultimate goal of Georgia’s assessment and accountability system is to ensure that all students are provided the opportunity to engage with high-quality content standards, receive high-quality instruction predicated upon those standards, and are positioned to meet high academic expectations.

Features of the Georgia Milestones Assessment System include:

- technology-enhanced items in all grades and courses;
- open-ended (constructed-response) items in English Language Arts (all grades and courses);
- a writing component (in response to passages read by students) at every grade level and course within the English Language Arts assessment; and
- a transition to online administration over time, with online administration considered the primary mode of administration and paper/pencil as a backup until the transition is complete.

The primary mode of administration for the Georgia Milestones program is online, with the goal of completing the transition from paper/pencil within five years after the inaugural administration (i.e., the 2014–2015 school year). Paper/pencil test materials (such as Braille) will remain available for students with disabilities who may require them in order to access the assessment.
Georgia Milestones follows guiding principles to help ensure that the assessment system:

- is sufficiently challenging to ensure Georgia students are well positioned to compete with other students across the United States and internationally;
- is intentionally designed across grade levels to send a clear signal of student academic progress and preparedness for the next level, whether it is the next grade level, course, or college or career;
- is accessible to all students, including those with disabilities or limited English proficiency, at all achievement levels;
- supports and informs the state’s educator-effectiveness initiatives, ensuring items and forms are appropriately sensitive to quality instructional practices; and
- accelerates the transition to online administration, allowing—over time—for the inclusion of innovative technology-enhanced items.

GEORGIA MILESTONES END-OF-COURSE (EOC) ASSESSMENTS

As previously mentioned, Georgia law (§20-2-281) mandates that the State Board of Education adopt EOC assessments for core courses to be determined by the Board. An EOC assessment serves as a student’s final exam in the associated course.

With educator input and State Board approval, the Georgia Milestones EOC assessments measure student achievement in the following courses: Ninth Grade Literature and Composition, American Literature and Composition, Algebra I, Geometry, Coordinate Algebra, Analytic Geometry, Physical Science, Biology, United States History, and Economics/Business/Free Enterprise.

Any student enrolled in and/or receiving credit for one of the above-mentioned courses, regardless of grade level, is required to take the Georgia Milestones EOC assessment upon completion of that course. This includes middle school students completing a course associated with a Georgia Milestones EOC assessment, regardless of whether they are receiving high school credit. Students enrolling from non-accredited programs are required to take and pass the Georgia Milestones EOC assessment prior to receiving credit for the course.

A student’s final grade in the course will be calculated using the Georgia Milestones EOC assessment as follows (State Board Rule 160-4-2-.13):

- For students enrolled in Grade 9 for the first time before July 1, 2011, the EOC assessment counts as 15% of the final grade.
- For students enrolled in Grade 9 for the first time on or after July 1, 2011, the EOC assessment counts as 20% of the final grade.

Results of the EOC assessments, according to the legislated and identified purposes, must:

- provide a valid measure of student achievement of the state content standards across the full achievement continuum;
- serve as the final exam for each course, contributing 15% or 20% to the student’s final course grade;
- provide a clear signal of each student’s preparedness for the next course and ultimately post-secondary endeavors (college and career);
- allow for the detection of the academic progress made by each student from one assessed course to the next;
- support and inform educator-effectiveness measures; and
- inform state and federal accountability measures at the school, district, and state levels.
Additional uses of the EOC assessments include: (1) certifying student proficiency prior to the awarding of credit for students enrolling from non-accredited private schools, home study programs, or other non-traditional educational centers and (2) allowing eligible students to demonstrate competency without taking the course and earn course credit (e.g., “test out”). In both cases, students are allotted one administration.

ASSESSMENT GUIDE

The Georgia Milestones Geometry EOC Assessment Guide is provided to acquaint Georgia educators and other stakeholders with the structure of and content assessed by the test. Importantly, this guide is not intended to inform instructional planning. It is essential to note that there are a small number of content standards that are better suited for classroom or individual assessment than for large-scale summative assessment. While those standards are not included in the tests and therefore are not included in this Assessment Guide, the knowledge, concepts, and skills inherent in those standards are often required for the mastery of the standards that are assessed. Failure to attend to all content standards within a course can limit a student’s opportunity to learn and show what he or she knows and can do on the assessment.

The Georgia Milestones Geometry EOC Assessment Guide is in no way intended to substitute for the state-mandated content standards; it is provided to help educators better understand the structure and content of the assessment, but it is not all-encompassing of the knowledge, concepts, and skills covered in the course or assessed on the test. The state-adopted content standards and associated standards-based instructional resources, such as the Content Frameworks, should be used to plan instruction. This Assessment Guide can serve as a supplement to those resources, in addition to any locally developed resources, but should not be used in isolation. In principle, the Assessment Guide is intended to be descriptive of the assessment program and should not be considered all-inclusive. The state-adopted content standards are located at www.georgiastandards.org.
TESTING SCHEDULE

The Georgia Milestones Geometry EOC assessment is offered during three Main Administrations. Main Administrations are primarily intended to provide an opportunity to assess student achievement at the completion of a course and to serve as the final exam for the associated course as required by State Board Rule. As a result, the EOC assessment should occur as close to the conclusion of the course as possible. Main Administrations can also be utilized to verify credit from a non-accredited school or homeschooling. In addition to the Main Administrations, Mid-Month Administrations are provided in order to allow students additional testing opportunities for the various reasons noted below.

<table>
<thead>
<tr>
<th>Purpose for EOC Assessment</th>
<th>Winter & Spring Main Administrations</th>
<th>Mid-Month Administrations</th>
<th>Summer Main Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completion of Course</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Makeup from Previous Administration</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Retest</td>
<td>No*</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Test Out</td>
<td>No</td>
<td>Yes*</td>
<td>Yes</td>
</tr>
<tr>
<td>Validation of Credit</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*Winter and Spring Main Administrations cannot be used for the purpose of a retest.

**August, September, and March Mid-Month Administrations as well as the Summer Main Administration can be used for the purpose of a test out.

Note: Each district determines a local testing window within the state-designated testing window.
TEST STRUCTURE

DESCRIPTION OF TEST FORMAT AND ORGANIZATION

The Georgia Milestones Geometry EOC assessment is primarily a criterion-referenced test designed to provide information about how well a student has mastered the state-adopted content standards within the course. The assessment consists of both operational items and field test items (newly written items that are being tried out and do not contribute to the student’s score). Each student will receive one of four Achievement Level designations, depending on how well the student has mastered the content standards. The four Achievement Level designations are Beginning Learner, Developing Learner, Proficient Learner, and Distinguished Learner. In addition to criterion-referenced information, the Georgia Milestones measures will also produce an estimate of how Georgia students are achieving relative to their peers nationally. The norm-referenced information provided is supplementary to the criterion-referenced Achievement Level designation and will not be utilized in any manner other than to serve as a barometer of national comparison. Only the criterion-referenced scores and Achievement Level designations will be utilized in the accountability metrics associated with the assessment program (such as student growth measures, educator-effectiveness measures, or the CCRPI).

The table on the following page outlines the number and types of items included on the Geometry EOC assessment.
Test Structure

Geometry EOC Assessment Design

<table>
<thead>
<tr>
<th>Description</th>
<th>Number of Items</th>
<th>Number of Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-point Selected-Response and Technology-Enhanced Items(^1,2)</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>2-point Technology-Enhanced Items(^1)</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Field Test Items(^3)</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Total(^4)</td>
<td>55</td>
<td>58</td>
</tr>
</tbody>
</table>

\(^1\) **Technology-Enhanced:** Possible variants of the technology-enhanced item types used for Geometry include multiple-part selected-response, multiple-select, drag-and-drop, drop-down, graphing, and keypad-input.

\(^2\) **1-point Selected-Response and Technology-Enhanced Items:** The ratio of selected-response to technology-enhanced items may vary. The target range of 1-point technology-enhanced items is 0 to 5.

\(^3\) **Field Test Items:** Field test items may include 1-point selected-response, 1-point technology-enhanced, and 2-point technology-enhanced items.

\(^4\) **Total:** Of the total 55 items, 50 contribute to the student’s Geometry score.

The test will be given in two sections. Section 1 is divided into two parts. Students may have up to 65 minutes per section to complete Sections 1 and 2. The total estimated testing time for the Geometry EOC assessment ranges from approximately 60 to 130 minutes. Total testing time describes the amount of time students have to complete the assessment. It does not take into account the time required for the test examiner to complete pre-administration and post-administration activities (such as reading the standardized directions to students). Sections 1 and 2 may be administered on the same day or across two consecutive days based on the district’s testing protocols for the EOC measures (in keeping with state guidance).

During the Geometry EOC assessment, a formula sheet will be available for students to use. There is an example of the formula sheet in the Additional Sample Items section of this guide. Another feature of the Geometry EOC assessment is that students may use a graphing calculator in Part B of Section 1 and in all of Section 2.
CONTENT MEASURED

The Geometry EOC assessment will measure the Geometry standards that are described at www.georgiastandards.org.

The content of the assessment is organized into four groupings, or domains, of standards for the purposes of providing feedback on student performance. A content domain is a reporting category that broadly describes and defines the content of the course, as measured by the EOC assessment. The standards for Geometry are grouped into four domains: Congruence and Similarity; Circles; Equations and Measurement; and Statistics and Probability. Each domain was created by organizing standards that share similar content characteristics. The content standards describe the level of expertise that Geometry educators should strive to develop in their students. Educators should refer to the content standards for a full understanding of the knowledge, concepts, and skills subject to be assessed on the EOC assessment.

The approximate proportional number of points associated with each domain is shown in the following table. A range of cognitive levels will be represented on the Geometry EOC assessment. Educators should always use the content standards when planning instruction.

Geometry: Domain Structures and Content Weights

Reporting Categories and Content Standards

<table>
<thead>
<tr>
<th>Reporting Category/Domain</th>
<th>Content Standards Assessed</th>
<th>Approximate # of Points</th>
<th>Approximate % of Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congruence and Similarity</td>
<td>MGSE9-12.G.CO (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)</td>
<td>20</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>MGSE9-12.G.SRT (1, 2, 3, 4, 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circles</td>
<td>MGSE9-12.G.C (1, 2, 3, 4, 5)</td>
<td>9</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>MGSE9-12.G.GPE (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equations and Measurement</td>
<td>MGSE9-12.G.GPE (4, 5, 6, 7)</td>
<td>20</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>MGSE9-12.G.GMD (1, 2, 3, 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MGSE9-12.G.MG (1, 2, 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MGSE9-12.G.SRT (6, 7, 8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistics and Probability</td>
<td>MGSE9-12.S.CP (1, 2, 3, 4, 5, 6, 7)</td>
<td>9</td>
<td>15%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>58</td>
<td>100%</td>
</tr>
</tbody>
</table>

The Standards for Mathematical Practice (1–8) will be embedded within items aligned to the mathematical content standards.
ITEM TYPES

The Geometry EOC assessment consists of selected-response and technology-enhanced items.

A selected-response item, sometimes called a multiple-choice item, is defined as a question, problem, or statement that is followed by several answer choices, sometimes called options or response choices. The incorrect choices, called distractors, usually reflect common errors. The student’s task is to choose, from the choices provided, the best answer to the question (the stem). The Geometry selected-response items will have four answer choices.

A technology-enhanced item is an innovative way to measure student skills and knowledge by using scaffolding within a multi-step process. Technology-enhanced items are worth one or two points. If the item is worth two points, partial credit is awarded for special combinations of responses that do not include all the correct answers. For Geometry, there are a number of specific technology-enhanced item types being used:

- In multi-select items, the student is asked to pick two or three correct responses from five or six answer options.
- In multi-part items, the student responds to a question, statement, or prompt that has two or more parts.
- In drag-and-drop items, the student uses a mouse, touchpad, or touchscreen to move responses to designated areas on the screen.
- In drop-down menu items, the student uses a mouse, touchpad, or touchscreen to open a drop-down menu and select an option from the menu. A drop-down menu item may have multiple drop-down menus.
- In keypad-input items, the student uses the physical keyboard or the pop-up keyboard on a touchscreen to type a number, expression, or equation into an answer box.
- In coordinate-graph items, the student uses a mouse, touchpad, or touchscreen to draw lines and/or plot points on a coordinate grid on the screen.
- In line-plot items, the student uses a mouse, touchpad, or touchscreen to place Xs above a number line to create a line plot.
- In bar-graph items, the student uses a mouse, touchpad, or touchscreen to select the height of each bar to create a bar graph.
- In number-line items, the student uses a mouse, touchpad, or touchscreen to plot a point and/or represent inequalities.

Since some technology-enhanced items in this guide were designed to be used only in an online, interactive-delivery format, some of the item-level directions will not appear to be applicable when working within the format presented in this document (for example, “Move the clocks into the graph” or “Create a scatter plot”).

- This icon 🔄 identifies special directions that will help the student answer technology-enhanced items as shown in the format presented within this guide. These directions do not appear in the online version of the test but explain information about how the item works that would be easily identifiable if the student were completing the item in an online environment.
To give students practice using technology-enhanced items in an online environment very similar to how they will appear on the online test, visit “Experience Online Testing Georgia.”

1. Go to the website “Welcome to Experience Online Testing Georgia” (http://gaexperienceonline.com/).
2. Select “Test Practice.”
4. Select “EOC Test Practice.”
5. Select “Technology Enhanced Items.”
6. You will be taken to a login screen. Use the username and password provided on the screen to log in and practice navigating technology-enhanced items online.

Please note that Google Chrome is the only supported browser for this public version of the online testing environment.
Test Structure

DEPTH OF KNOWLEDGE DESCRIPTORS

Items found on the Georgia Milestones assessments, including the Geometry EOC assessment, are developed with a particular emphasis on cognitive complexity or Depth of Knowledge (DOK). DOK is measured on a scale of 1 to 4 and refers to the level of cognitive demand required to complete a task (or in this case, an assessment item). The higher the level, the more complex the item; however, higher levels do not necessarily mean more difficult items. For instance, a question can have a low DOK but a medium or even high difficulty level. Conversely, a DOK 4 question may have a low difficulty level but still require a great deal of cognitive thinking (e.g., analyzing and synthesizing information instead of just recalling it). The following descriptions and table show the expectations of the four DOK levels in greater detail.

Level 1 (Recall of Information) generally requires students to identify, list, or define, often asking them to recall who, what, when, and where. Consequently, this level usually asks students to recall facts, terms, concepts, and trends and may ask them to identify specific information contained in documents, excerpts, quotations, maps, charts, tables, graphs, or illustrations. Items that require students to “describe” and/or “explain” could be classified at Level 1 or Level 2, depending on what is to be described and/or explained. A Level 1 “describe” and/or “explain” would require students to recall, recite, or reproduce information.

Level 2 (Basic Reasoning) includes the engagement of some mental processing beyond recalling or reproducing a response. A Level 2 “describe” and/or “explain” would require students to go beyond a description or explanation of recalled information to describe and/or explain a result or “how” or “why.”

Level 3 (Complex Reasoning) requires reasoning, using evidence, and thinking on a higher and more abstract level than Level 1 and Level 2. Students will go beyond explaining or describing “how and why” to justifying the “how and why” through application and evidence. Level 3 questions often involve making connections across time and place to explain a concept or “big idea.”

Level 4 (Extended Reasoning) requires the complex reasoning of Level 3 with the addition of planning, investigating, applying significant conceptual understanding, and/or developing that will most likely require an extended period of time. Students should be required to connect and relate ideas and concepts within the content area or among content areas in order to be at this highest level. The distinguishing factor for Level 4 would be a show of evidence (through a task, a product, or an extended response) that the cognitive demands have been met.
The following table identifies skills that students will need to demonstrate at each DOK level, along with question cues appropriate for each level.

<table>
<thead>
<tr>
<th>Level</th>
<th>Skills Demonstrated</th>
<th>Question Cues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>• Make observations</td>
<td>• Find</td>
</tr>
<tr>
<td>Recall of Information</td>
<td>• Recall information</td>
<td>• List</td>
</tr>
<tr>
<td></td>
<td>• Recognize formulas, properties, patterns, processes</td>
<td>• Define</td>
</tr>
<tr>
<td></td>
<td>• Know vocabulary, definitions</td>
<td>• Identify; label; name</td>
</tr>
<tr>
<td></td>
<td>• Know basic concepts</td>
<td>• Choose; select</td>
</tr>
<tr>
<td></td>
<td>• Perform one-step processes</td>
<td>• Compute; estimate</td>
</tr>
<tr>
<td></td>
<td>• Translate from one representation to another</td>
<td>• Express</td>
</tr>
<tr>
<td></td>
<td>• Identify relationships</td>
<td>• Read from data displays</td>
</tr>
<tr>
<td></td>
<td>• Find</td>
<td>• Order</td>
</tr>
<tr>
<td></td>
<td>• List</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Define</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Identify; label; name</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Choose; select</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Compute; estimate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Express</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Read from data displays</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Order</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Apply</td>
<td></td>
</tr>
<tr>
<td>Level 2</td>
<td>• Apply learned information to abstract and real-life situations</td>
<td>• Calculate; solve</td>
</tr>
<tr>
<td>Basic Reasoning</td>
<td>• Use methods, concepts, theories in abstract and real-life situations</td>
<td>• Complete</td>
</tr>
<tr>
<td></td>
<td>• Perform multi-step processes</td>
<td>• Describe</td>
</tr>
<tr>
<td></td>
<td>• Solve problems using required skills or knowledge</td>
<td>• Explain how; demonstrate</td>
</tr>
<tr>
<td></td>
<td>(requires more than habitual response)</td>
<td>• Construct data displays</td>
</tr>
<tr>
<td></td>
<td>• Make a decision about how to proceed</td>
<td>• Construct; draw</td>
</tr>
<tr>
<td></td>
<td>• Identify and organize components of a whole</td>
<td>• Analyze</td>
</tr>
<tr>
<td></td>
<td>• Extend patterns</td>
<td>• Extend</td>
</tr>
<tr>
<td></td>
<td>• Identify/describe cause and effect</td>
<td>• Connect</td>
</tr>
<tr>
<td></td>
<td>• Recognize unstated assumptions, make inferences</td>
<td>• Classify</td>
</tr>
<tr>
<td></td>
<td>• Interpret facts</td>
<td>• Arrange</td>
</tr>
<tr>
<td></td>
<td>• Compare or contrast simple concepts/ideas</td>
<td>• Compare; contrast</td>
</tr>
</tbody>
</table>

Georgia Milestones Geometry EOC Assessment Guide

Copyright © 2020 by Georgia Department of Education. All rights reserved.
Test Structure

<table>
<thead>
<tr>
<th>Level</th>
<th>Skills Demonstrated</th>
<th>Question Cues</th>
</tr>
</thead>
</table>
| **Level 3** | • Solve an open-ended problem with more than one correct answer
• Create a pattern
• Relate knowledge from several sources
• Draw conclusions
• Make predictions
• Translate knowledge into new contexts
• Assess value of methods, concepts, theories, processes, formulas
• Make choices based on a reasoned argument
• Verify the value of evidence, information, numbers, data | • Plan; prepare
• Predict
• Create; design
• Generalize
• Justify; explain why; support; convince
• Assess
• Rank; grade
• Test; judge
• Recommend
• Select
• Conclude | **Complex Reasoning** |
| **Level 4** | • Analyze and synthesize information from multiple sources
• Apply mathematical models to illuminate a problem or situation
• Design a mathematical model to inform and solve a practical or abstract situation
• Combine and synthesize ideas into new concepts | • Design
• Connect
• Synthesize
• Apply concepts
• Analyze
• Create
• Prove | **Extended Reasoning** |
Selected-response items and technology-enhanced items are machine scored. However, the Geometry EOC assessment consists of selected-response and technology-enhanced items.

Students will receive a scale score and an Achievement Level designation based on total test performance. In addition, students will receive information on how well they performed at the domain level. For more information on scoring, please see the Georgia Milestones End-of-Course (EOC) Interpretive Guide for Score Reports.
EXAMPLE ITEMS

Example items, which are representative of the applicable DOK levels across various Geometry content domains, are provided.

All example and sample items contained in this guide are the property of the Georgia Department of Education.
Example Item 1

Selected-Response: 1 point

DOK Level: 1

Geometry Content Domain: Geometry

Standard: MGSE9-12.G.CO.6. Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.

Which transformation of △MNO results in a congruent triangle?

Correct Answer: B

Explanation of Correct Answer: The correct answer is choice (B). Choice (B) shows triangle MNO reflected across the y-axis, which is a rigid transformation that maintains congruency. Choices (A), (C), and (D) are incorrect because one of the triangles is contained entirely within the other triangle, so they cannot be congruent to each other.
Example Item 2

Selected-Response: 1 point

DOK Level: 2

Geometry Content Domain: Geometry

Standard: MGSE9-12.G.CO.12. Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.

A student used a compass and a straightedge to bisect $\angle ABC$ in this figure.

Which statement BEST describes point S?

A. Point S is located such that $SC = PQ$.
B. Point S is located such that $SA = PQ$.
C. Point S is located such that $PS = BQ$.
D. Point S is located such that $QS = PS$.

Correct Answer: D

Explanation of Correct Answer: The correct answer is choice (D) Point S is located such that $QS = PS$. Point S was constructed by placing a compass with a set radius at points P and Q. Therefore, PS and QS are both equal to the radius of the compass and equal to each other. Choices (A), (B), and (C) are incorrect because they identify incorrect line segments in the construction as congruent.
Example Item 3

Selected-Response: 1 point

DOK Level: 3

Geometry Content Domain: Geometry

Standard: MGSE9-12.G.CO.3. Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.

Rectangle $ABCD$ has points $A(2, 2)$, $B(6, 2)$, $C(6, 8)$, and $D(2, 8)$. The rectangle maps to $A'B'C'D'$ such that $(x, y) \rightarrow (y, -x)$.

Which statement is true about the transformation of $ABCD$ to $A'B'C'D'$?

A. $ABCD$ maps to $A'B'C'D'$ by a reflection over the x-axis, and B' is located at $(2, -6)$.
B. $ABCD$ maps to $A'B'C'D'$ by a reflection over the x-axis, and B' is located at $(6, -2)$.
C. $ABCD$ maps to $A'B'C'D'$ by a 90° clockwise rotation about the origin, and B' is located at $(2, -6)$.
D. $ABCD$ maps to $A'B'C'D'$ by a 90° clockwise rotation about the origin, and B' is located at $(6, -2)$.

Correct Answer: C

Explanation of Correct Answer: The correct answer is choice (C) $ABCD$ maps to $A'B'C'D'$ by a 90° clockwise rotation about the origin, and B' is located at $(2, -6)$. Choices (A) and (B) are incorrect because the given transformation is a rotation of 90° clockwise, not a reflection over the x-axis. Choice (D) is incorrect because the location of $(6, -2)$ would be the result of a reflection over the x-axis.
ADDIITIONAL SAMPLE ITEMS

This section has two parts. The first part is a set of 20 sample items for Geometry. The second part contains a table that shows for each item the standard assessed, the DOK level, the correct answer (key), and a rationale/explanation about the key and distractors. The sample items can be utilized as a mini-test to familiarize students with the item formats found on the assessment.

All example and sample items contained in this guide are the property of the Georgia Department of Education.
Below are the formulas you may find useful as you take the test. However, you may find that you do not need to use all of the formulas. You may refer to this formula sheet as often as needed.

Geometry Formulas

Perimeter
The perimeter of a polygon is equal to the sum of the length of its sides.

Distance Formula
\[d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

Coordinates of point which partitions a directed line segment AB at the ratio of a:b from A(x_1,y_1) to B(x_2,y_2)
\[(x, y) = \left(\frac{bx_1 + ax_2}{b + a}, \frac{by_1 + ay_2}{b + a} \right) \]

OR
\[(x, y) = \left(\frac{a}{a + b}(x_2 - x_1), \frac{a}{a + b}(y_2 - y_1) \right) \]

Circumference of a Circle
\[C = \pi d \quad \text{or} \quad C = 2\pi r \]
\[\pi \approx 3.14 \]

Arc Length of a Circle
\[\text{Arc Length} = \frac{2\pi r \theta}{360} \]

Area
- Triangle \[A = \frac{1}{2}bh \]
- Rectangle \[A = bh \]
- Circle \[A = \pi r^2 \]

Area of a Sector of a Circle
\[\text{Area of Sector} = \frac{\pi r^2 \theta}{360} \]

Pythagorean Theorem
\[a^2 + b^2 = c^2 \]

Trigonometric Relationships
\[\sin \theta = \frac{\text{opp}}{\text{hyp}}; \quad \cos \theta = \frac{\text{adj}}{\text{hyp}}; \quad \tan \theta = \frac{\text{opp}}{\text{adj}} \]

Equation of a Circle
\[(x - h)^2 + (y - k)^2 = r^2 \]

Volume
- Cylinder \[V = \pi r^2 h \]
- Pyramid \[V = \frac{1}{3} Bh \]
- Cone \[V = \frac{1}{3} \pi r^2 h \]
- Sphere \[V = \frac{4}{3} \pi r^3 \]

Statistics Formulas

Conditional Probability
\[P(A|B) = \frac{P(A \text{ and } B)}{P(B)} \]

Multiplication Rule for Independent Events
\[P(A \text{ and } B) = P(A) \cdot P(B) \]

Addition Rule
\[P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \]

You can find mathematics formula sheets on the Georgia Milestones webpage at http://www.gadoe.org/Curriculum-Instruction-and-Assessment/Assessment/Pages/Georgia-Milestones-EOC-Resources.aspx.
Item 1

Selected-Response: 1 point

In this figure, \(l \parallel n\). Jessie listed the first two steps in a proof that shows \(m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ\).

\[
\begin{align*}
\angle 2 & \cong \angle 4 \\
\angle 3 & \cong \angle 5
\end{align*}
\]

Which justification can Jessie give for Steps 1 and 2?

A. Alternate interior angles are congruent.
B. Corresponding angles are congruent.
C. Vertical angles are congruent.
D. Alternate exterior angles are congruent.

Item 2

Selected-Response: 1 point

The points \(O(-4, 3), A(x, y),\) and \(B(x, 3)\) create a right triangle inside Circle \(O\). Point \(A\) lies on the circle. \(OA\) is 6 centimeters.

What is the equation of Circle \(O\)?

A. \((x + 4)^2 + (y - 3)^2 = 6\)
B. \((x - 3)^2 + (y - 3)^2 = 6\)
C. \((x - 3)^2 + (y + 4)^2 = 36\)
D. \((x + 4)^2 + (y - 3)^2 = 36\)
Item 3

Selected-Response: 1 point

In this circle, \(m \overarc{QR} = 72^\circ \).

What is \(m \angle QPR \)?

A. 18°
B. 24°
C. 36°
D. 72°

Item 4

Selected-Response: 1 point

Look at the square pyramid.

If the plane in the figure is parallel to the base of the pyramid, which BEST describes the shape of the cross-section?

A. a rectangle
B. a pentagon
C. a triangle
D. a circle
Additional Sample Items

Item 5
Selected-Response: 1 point

This diagram shows two ladders leaning against a building. Each ladder is leaning at an angle of 70 degrees.

- The length of the short ladder is 8 feet.
- The base of the long ladder is 5 feet farther from the base of the building than the base of the short ladder is.

\[
\begin{align*}
\sin 70^\circ &= 0.9397 \\
\cos 70^\circ &= 0.3420 \\
\tan 70^\circ &= 2.7475
\end{align*}
\]

What is the length, to the nearest foot, of the long ladder?

A. 10
B. 13
C. 23
D. 26
Item 6
Selected-Response: 1 point

Look at the coordinate grid below.

What is the perimeter, in units, of \(\triangle PQR \)?

A. \(4 + \sqrt{42} \)
B. 14
C. \(9 + \sqrt{17} \)
D. 17
Additional Sample Items

Item 7

Selected-Response: 1 point

Parallelogram $ABCD$ has vertices as shown.

Which equation would be used in proving that the diagonals of parallelogram $ABCD$ bisect each other?

A. $\sqrt{(3-1)^2 + (2-0)^2} = \sqrt{(1-3)^2 + (0+4)^2}$

B. $\sqrt{(3+1)^2 + (2+0)^2} = \sqrt{(1+3)^2 + (0-4)^2}$

C. $\sqrt{(-1-1)^2 + (4-0)^2} = \sqrt{(1-3)^2 + (0+4)^2}$

D. $\sqrt{(-1+1)^2 + (4+0)^2} = \sqrt{(1+3)^2 + (0-4)^2}$
Item 8

Selected-Response: 1 point

Paul has a spinner with the colors red, green, blue, orange, and purple on it. He also has a number cube with sides labeled 1 through 6.

The probability of the arrow of the spinner stopping on green is $\frac{1}{5}$, and the probability of getting a number greater than 2 when tossing the number cube is $\frac{4}{6}$.

What is the probability of the arrow of the spinner stopping on green and getting a number greater than 2 when tossing the number cube?

A. $\frac{2}{15}$
B. $\frac{3}{10}$
C. $\frac{7}{10}$
D. $\frac{13}{15}$

Item 9

Multi-Part Technology-Enhanced: 2 points

Triangle ABC is similar but not congruent to triangle DEF.

Part A

Which series of transformations could map triangle ABC onto triangle DEF?

A. translation 4 units up, rotation 75° clockwise about the origin
B. reflection across the line $y = 2$, rotation 90° clockwise about the origin
C. translation 3 units left, dilation of scale factor 2 centered at the origin
D. reflection across the line $x = 1$, reflection across the line $y = 5$

Part B

Which equation must be true about triangle ABC and triangle DEF?

A. $AB = DE$
B. $AC = EF$
C. $m\angle A + m\angle B = m\angle D + m\angle F$
D. $m\angle A + m\angle C = m\angle D + m\angle F$
Additional Sample Items

Item 10

Multi-Part Technology-Enhanced: 2 points

Triangle GHJ is a right triangle. Angle G has a measure of \(g \)°, angle H has a measure of \(h \)°, and angle J is a right angle.

Part A

Which equation must be true?

A. \(\sin(h) = \sin(g) \)
B. \(\cos(g) = \sin(h) \)
C. \(\cos(h) = \cos(g) \)
D. \(\sin(h) + \cos(h) = \tan(h) \)

Part B

Given that \(\tan(g) = \frac{\sin(g)}{\cos(g)} \), which ratio must have a value equivalent to the tangent of \(g \)°?

A. \(\frac{\cos(h)}{\sin(g)} \)
B. \(\frac{\cos(h)}{\sin(h)} \)
C. \(\frac{\sin(h)}{\cos(h)} \)
D. \(\frac{\sin(h)}{\cos(g)} \)
Item 11
Multi-Select Technology-Enhanced: 2 points

The figure shows circle C with tangent lines \overline{QR} and \overline{SR}.

The measure of $\angle QCS$ is x°.

Select THREE statements that are true about the figure.

A. The measure of $\angle QPS$ is $(90 - x)^\circ$.
B. The measure of $\angle QPS$ is $\frac{1}{2}x^\circ$.
C. The measure of $\angle PSR$ is 90°.
D. The measure of $\angle CQR$ is 90°.
E. The measure of $\angle QRS$ is $(180 - x)^\circ$.
F. The measure of $\angle QRS$ is $2x^\circ$.
Item 12

Drag-and-Drop Multi-Part Technology-Enhanced: 2 points

Part A

A triangle is shown on the coordinate grid. The triangle is reflected across the y-axis. Move the image of the triangle after the reflection to the correct location on the graph.

Use a mouse, touchpad, or touchscreen to move a triangle into the coordinate grid. Only one triangle may be used.

Go on to the next page to finish item 12.
Item 12. Continued.

Part B

A triangle is shown on the coordinate grid. The triangle is rotated 180° around the origin. Move the image of the triangle after the rotation to the correct location on the graph.

Use a mouse, touchpad, or touchscreen to move a triangle into the coordinate grid. Only one triangle may be used.
Item 13

Drag-and-Drop Technology-Enhanced: 2 points

In this diagram, \(ABCD\) is a parallelogram and \(\overline{AC}\) is a diagonal.

Given: \(ABCD\) is a parallelogram and \(\overline{AC}\) is a diagonal.

Prove: \(\angle D = \angle B\)

Move the correct reasons into the appropriate parts of the proof.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (ABCD) is a parallelogram.</td>
<td>Given</td>
</tr>
<tr>
<td>2 (\overline{AC}) is a diagonal.</td>
<td>Given</td>
</tr>
<tr>
<td>3 (AB \parallel DC) (AD \parallel BC)</td>
<td></td>
</tr>
<tr>
<td>4 (\angle ACD \equiv \angle CAB) (\angle ACB \equiv \angle CAD)</td>
<td></td>
</tr>
<tr>
<td>5 (\overline{AC} \equiv \overline{CA})</td>
<td></td>
</tr>
<tr>
<td>6 (\triangle ACD \equiv \triangle CAB)</td>
<td></td>
</tr>
<tr>
<td>7 (\angle D \equiv \angle B)</td>
<td></td>
</tr>
</tbody>
</table>

- Reflexive Property
- Definition of a Parallelogram
- Alternate interior angles are congruent.
- Corresponding parts of congruent triangles are congruent.
- Vertical angles are congruent.
- Angle-Side-Angle Congruence
- Angle-Angle-Side Congruence

Use a mouse, touchpad, or touchscreen to move a reason into each blank box. Each reason may be used once.
Item 14

Drag-and-Drop Technology-Enhanced: 2 points

Two triangles are shown.

Move a value to each blank to create a transformation that maps ABC to $A'B'C'$.

Use a mouse, touchpad, or touchscreen to move a value into each blank. Each value may be used twice.
Item 15
Drag-and-Drop Technology-Enhanced: 2 points

A figure is shown.

Move a number into each box to complete the equation for the volume, in cubic centimeters, of the figure.

Use a mouse, touchpad, or touchscreen to move a number into each box. Each number may be used 3 times.
Item 16

Drag-and-Drop Technology-Enhanced: 2 points

A number cube with faces labeled from 1 to 6 is rolled. Event A is rolling an even number. Event B is rolling a number less than 4.

Move numbers into each column to show the complete subsets of the sample space.

Use a mouse, touchpad, or touchscreen to move numbers into the columns. Each number may be used 3 times.
Item 17

Drop-Down Technology-Enhanced: 1 point

Two triangles are shown.

[Diagram of two triangles]

Use the drop-down menus to complete the congruence statement.

\[\triangle ABC = \triangle \text{by} \text{congruence.} \]

Use a mouse, touchpad, or touchscreen to click the arrow beside each of the two blank boxes. When you click the arrow, a drop-down menu will appear, showing you all the possible options for that blank box. Each drop-down menu with its options is shown below.

[Drop-down menu options: LMN, LNM, MLN, MNL, NLM, NML]
Item 18

Keypad-Input Multi-Part Technology-Enhanced: 2 points

Part A

Emily's bus is scheduled to arrive at 6:48 A.M. The probability that Emily arrives at the bus stop after 6:48 A.M. is 0.06. The probability that the bus arrives at the bus stop after 6:48 A.M. is 0.04. The time that Emily arrives at the bus stop and the time that the bus arrives at the bus stop are independent.

Part A. What is the probability that the bus arrives at the bus stop after 6:48 A.M. given that Emily arrives at the bus stop after 6:48 A.M.?

Use a mouse, touchpad, or touchscreen to enter a response.

Go on to the next page to finish item 18.
Item 18. Continued.

Part B

Emily's bus is scheduled to arrive at 6:48 A.M. The probability that Emily arrives at the bus stop after 6:48 A.M. is 0.06. The probability that the bus arrives at the bus stop after 6:48 A.M. is 0.04. The time that Emily arrives at the bus stop and the time that the bus arrives at the bus stop are independent.

Part B What is the probability that both Emily and the bus will arrive at the bus stop after 6:48 A.M. on a given day?

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0 .</th>
</tr>
</thead>
</table>

Use a mouse, touchpad, or touchscreen to enter a response.
Item 19

Coordinate-Graph Technology-Enhanced: 1 point

A line segment is shown on a coordinate plane.

Draw the image of the line segment after a 90° rotation counterclockwise about the point (-2, -1).

Use a mouse, touchpad, or touchscreen to graph a line on the coordinate grid. At most 1 line segment and 2 points can be graphed.
Item 20

Keypad-Input Technology-Enhanced: 1 point

A cone and a pyramid are shown.

How many times the volume of the pyramid is the volume of the cone? Use 3.14 for \(\pi \) and round your answer to the nearest tenth.

Use a mouse, touchpad, or touchscreen to enter a response.
ADDITIONAL SAMPLE ITEM KEYS

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard/Element</th>
<th>DOK Level</th>
<th>Correct Answer</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MGSE9-12.G.CO.10</td>
<td>2</td>
<td>A</td>
<td>The correct answer is choice (A) Alternate interior angles are congruent. Each step is an example of alternate angles being congruent. Choice (B) is incorrect because the angles shown are not corresponding angles. Choice (C) is incorrect because the angles shown are not vertical angles. Choice (D) is incorrect because the angles shown are not alternate exterior angles.</td>
</tr>
<tr>
<td>2</td>
<td>MGSE9-12.G.GPE.1</td>
<td>3</td>
<td>D</td>
<td>The correct answer is choice (D) $(x + 4)^2 + (y - 3)^2 = 36$. Choice (A) is incorrect because the radius is not squared. Choice (B) is incorrect because it uses the wrong coordinate for the x-value and does not square the radius. Choice (C) is incorrect because it confuses the x- and y-coordinates.</td>
</tr>
<tr>
<td>3</td>
<td>MGSE9-12.G.C.2</td>
<td>1</td>
<td>C</td>
<td>The correct answer is choice (C) 36°. An inscribed angle is one-half the measure of the arc it creates, and half of 72 is 36. Choice (A) is incorrect because it is one-quarter the measure of the arc it creates. Choice (B) is incorrect because it is one-third the measure of the arc it creates. Choice (D) is incorrect because it is the full measure of the arc it creates.</td>
</tr>
<tr>
<td>4</td>
<td>MGSE9-12.G.GMD.4</td>
<td>2</td>
<td>A</td>
<td>The correct answer is choice (A) a rectangle. Choices (B), (C), and (D) are incorrect because they represent the incorrect cross-sections.</td>
</tr>
<tr>
<td>5</td>
<td>MGSE9-12.G.SRT.8</td>
<td>3</td>
<td>C</td>
<td>The correct answer is choice (C) 23. The ratio of the distance from the short ladder to the wall to the length of the short ladder is equal to the cosine of the angle the ladder forms with the ground. So the short ladder is $8\cos(70^\circ) = 2.736$ feet from the wall, and the long ladder is 7.736 feet from the wall. Similarly, the ratio of the distance from the long ladder to the wall to the length of the long ladder is equal to the cosine of the angle the ladder forms with the ground. So the long ladder is $7.736/\cos(70^\circ) \approx 22.62$ feet. Choice (B) is incorrect because it is the sum of the lengths in the figure. Choices (A) and (D) are incorrect because they use incorrect trigonometric ratios.</td>
</tr>
<tr>
<td>6</td>
<td>MGSE9-12.G.GPE.7</td>
<td>2</td>
<td>C</td>
<td>The correct answer is choice (C) $9 + \sqrt{17}$. Using the Pythagorean Theorem, $PQ = \sqrt{(3^2 + 4^2)} = 5$, $QR = \sqrt{(1^2 + 4^2)} = \sqrt{17}$, and $RP = 4$. Choice (A) is incorrect because it incorrectly applies the Pythagorean Theorem. Choices (B) and (D) are incorrect because they estimate the lengths without using the Pythagorean Theorem.</td>
</tr>
<tr>
<td>Item</td>
<td>Standard/Element</td>
<td>DOK Level</td>
<td>Correct Answer</td>
<td>Explanation</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>7</td>
<td>MGSE9-12.G.GPE.4</td>
<td>2</td>
<td>C</td>
<td>The correct answer is choice (C) \sqrt{(-1 - 1)^2 + (4 - 0)^2} = \sqrt{(1 - 3)^2 + (0 + 4)^2}. It uses the distance formula to show that line segment AC is cut in half at the intersection with line segment BD. Choice (A) is incorrect because it compares part of line segment BD to part of line segment AC. Choices (B) and (D) are incorrect because the distance formula should subtract the x-values and y-values instead of adding as shown.</td>
</tr>
<tr>
<td>8</td>
<td>MGSE9-12.S.CP.2</td>
<td>2</td>
<td>A</td>
<td>The correct answer is choice (A) \frac{2}{15}. It is the result of multiplying the probabilities of two independent events. Choice (B) is incorrect because it is the result of dividing the two probabilities. Choice (C) is incorrect because it is the complement of the probabilities being divided. Choice (D) is incorrect because it is the result of the two probabilities being added.</td>
</tr>
<tr>
<td>9</td>
<td>MGSE9-12.G.SRT.2</td>
<td>2</td>
<td>Part A: C Part B: D</td>
<td>Part A: The correct answer is choice (C) translation 3 units left, dilation of scale factor 2 centered at the origin. It is the only transformation that has a scale factor, resulting in triangles that are similar but not congruent. Choices (A), (B), and (D) are incorrect because they all result in triangles that would be congruent. Part B: The correct answer is choice (D) m\angle A + m\angle C = m\angle D + m\angle F. Corresponding angles in similar triangles are equal. \angle A and \angle D are equal, as well as \angle C and \angle F are equal, so adding the respective angle measures together will result in an equal amount. Choices (A) and (B) are incorrect because similar triangles do not have equal side lengths. Choice (C) is incorrect because the angles given do not correspond to each other, so they might not add up to equal amounts.</td>
</tr>
<tr>
<td>Item</td>
<td>Standard/Element</td>
<td>DOK Level</td>
<td>Correct Answer</td>
<td>Explanation</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 10 | MGSE9-12.G.SRT.7 | 2 | Part A: B, Part B: B | Part A: The correct answer is choice (B) $\cos(g^\circ) = \sin(h^\circ)$. The acute angles in a right triangle are always complementary, which means the cosine of one is equal to the sine of the other. Choices (A) and (C) are incorrect because the sines and cosines of the acute angles in a right triangle are not necessarily equal to each other. Choice (D) is incorrect because the tangent of an angle is not equal to the sum of the sine and cosine of the same angle.
Part B: The correct answer is choice (B) $\frac{\cos(h^\circ)}{\sin(h^\circ)}$. The sine of g° is equal to the cosine of h°, and the cosine of g° is equal to the sine of h°. Choices (A), (C), and (D) are incorrect because they substitute values in for the sine of g° and the cosine of g° that are not equal to the original values. |
| 11 | MGSE9-12.G.C.2 | 3 | B/D/E | The correct choices are (B), (D), and (E). Choice (B) is correct because an inscribed angle measure is half the measure of the intercepted arc. Choice (D) is correct because a line that is tangent to a circle is perpendicular to the radius drawn to the point of tangency. Choice (E) is correct because a circumscribed angle measure is equal to 180° minus the measure of the central angle that forms the intercepted arc. Choice (A) is incorrect because the measure of an inscribed angle is half of the measure of the intercepted arc, rather than the difference between 90° and the central angle. Choice (C) is incorrect because the measure of the angle made by a tangent and a secant line segment cannot be 90°. Choice (F) is incorrect because the measure of a circumscribed angle is the difference between 180° and the central angle, rather than twice the central angle. |
| 12 | MGSE9-12.G.CO.5 | 1 | N/A | See scoring rubric and exemplar response beginning on page 45. |
| 13 | MGSE9-12.G.CO.11 | 2 | N/A | See scoring rubric and exemplar response on page 47. |
| 14 | MGSE9-12.G.CO.6 | 2 | N/A | See scoring rubric and exemplar response on page 48. |
| 15 | MGSE9-12.G.GMD.3 | 2 | N/A | See scoring rubric and exemplar response on page 49. |
Additional Sample Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard/Element</th>
<th>DOK Level</th>
<th>Correct Answer</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>MGSE9-12.S.CP.1</td>
<td>2</td>
<td>N/A</td>
<td>See scoring rubric and exemplar response on page 50.</td>
</tr>
<tr>
<td>17</td>
<td>MGSE9-12.G.CO.8</td>
<td>2</td>
<td>N/A</td>
<td>See scoring rubric and exemplar response on page 51.</td>
</tr>
<tr>
<td>18</td>
<td>MGSE9-12.S.CP.2</td>
<td>2</td>
<td>N/A</td>
<td>See scoring rubric and exemplar response on page 52.</td>
</tr>
<tr>
<td>19</td>
<td>MGSE9-12.G.CO.5</td>
<td>2</td>
<td>N/A</td>
<td>See scoring rubric and exemplar response on page 53.</td>
</tr>
<tr>
<td>20</td>
<td>MGSE9-12.G.GMD.3</td>
<td>2</td>
<td>N/A</td>
<td>See scoring rubric and exemplar response on page 54.</td>
</tr>
</tbody>
</table>
EXAMPLE SCORING RUBRICS AND EXEMPLAR RESPONSES

Item 12

Scoring Rubric

<table>
<thead>
<tr>
<th>Points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>The student correctly answers both Part A and Part B.</td>
</tr>
<tr>
<td>1</td>
<td>The student correctly answers either Part A OR Part B.</td>
</tr>
<tr>
<td>0</td>
<td>The student does not correctly answer either part.</td>
</tr>
</tbody>
</table>

Exemplar Response

Part A

The correct response is shown below.

When a triangle is reflected across the y-axis, the signs of the x-coordinates are changed and the y-coordinates stay the same, as shown by the rule $(x, y) \rightarrow (-x, y)$. The original points of $(0, 2)$, $(3, 1)$, and $(4, -2)$ become $(0, 2)$, $(-3, 1)$, and $(-4, -2)$.

Go on to the next page to finish item 12.
Item 12

Part B

The correct response is shown below.

When a triangle is rotated 180°, the signs of the x- and y-coordinates change, as shown by the rule $(x, y) \rightarrow (-x, -y)$. The original points of $(-2, 1)$, $(-1, -2)$, and $(1, -1)$ become $(2, -1)$, $(1, 2)$, and $(-1, 1)$.
Item 13

Scoring Rubric

<table>
<thead>
<tr>
<th>Points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>The student correctly places reasons in all five rows.</td>
</tr>
<tr>
<td>1</td>
<td>The student correctly places reasons in two, three, or four rows.</td>
</tr>
<tr>
<td>0</td>
<td>The student does not correctly place reasons in at least two rows.</td>
</tr>
</tbody>
</table>

Exemplar Response

The correct response is shown below.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: $ABCD$ is a parallelogram.</td>
<td>Given</td>
</tr>
<tr>
<td>2: AC is a diagonal.</td>
<td>Given</td>
</tr>
<tr>
<td>3: $AB \parallel DC$ $AD \parallel BC$</td>
<td>Definition of a Parallelogram</td>
</tr>
<tr>
<td>4: $\angle ACD \equiv \angle CAB$ $\angle ACB \equiv \angle CAD$</td>
<td>Alternate interior angles are congruent.</td>
</tr>
<tr>
<td>5: $AC \equiv CA$</td>
<td>Reflexive Property</td>
</tr>
<tr>
<td>6: $\triangle ACD \equiv \triangle CAB$</td>
<td>Angle-Side-Angle Congruence</td>
</tr>
<tr>
<td>7: $\angle D \equiv \angle B$</td>
<td>Corresponding parts of congruent triangles are congruent.</td>
</tr>
</tbody>
</table>

Vertical angles are congruent.

Angle-Angle-Side Congruence

The reason for statement 3, “Definition of a Parallelogram,” is using the given information that $ABCD$ is a parallelogram. The definition of a parallelogram states that opposite sides of a parallelogram are parallel. The reason for statement 4, “Alternate interior angles are congruent,” uses the parallel lines identified in statement 3 and the diagonal from A to C as the transversal. This diagonal creates the two pairs of alternate interior angles. The reason for statement 5, “Reflexive Property,” is identifying the side that is shared between the two triangles. The reason for statement 6, “Angle-Side-Angle Congruence,” is combining the two pairs of congruent angles from statement 4 with the congruent sides from statement 5. Since the sides that are congruent are between the congruent angles, the proper congruence is Angle-Side-Angle and not Angle-Angle-Side. The reason for statement 7, “Corresponding parts of congruent triangles are congruent,” or CPCTC, is a very common reasoning that follows after stating two triangles are congruent. Once two congruent triangles have been identified, all corresponding parts between those two triangles must be congruent with each other. Since angle D and angle B are in corresponding positions between the two triangles, they are congruent.
Item 14

Scoring Rubric

<table>
<thead>
<tr>
<th>Points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>The student correctly places both values.</td>
</tr>
<tr>
<td>1</td>
<td>The student correctly places one of the two values.</td>
</tr>
<tr>
<td>0</td>
<td>The student does not correctly place either value.</td>
</tr>
</tbody>
</table>

Exemplar Response

The correct response is shown below.

\[(x, y) \rightarrow (x - 2, y - 3)\]

Triangle \(A'B'C'\) is located 2 units left and 3 units down from triangle \(ABC\). This transformation is accomplished by subtracting 2, “–2,” from each \(x\)-coordinate and subtracting 3, “–3,” from each \(y\)-coordinate.
Item 15

Scoring Rubric

<table>
<thead>
<tr>
<th>Points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>The student correctly places all three numbers.</td>
</tr>
<tr>
<td>1</td>
<td>The student correctly places the radius of 5 OR correctly places the other two numbers.</td>
</tr>
<tr>
<td>0</td>
<td>The student does not correctly place the radius of 5 AND does not correctly place the other two numbers.</td>
</tr>
</tbody>
</table>

Exemplar Response

The correct response is shown below.

The correct response is shown below.

\[
V = \frac{1}{3} \pi r^2 h
\]

The formula for the volume of a cone is \(V = \frac{1}{3} \pi r^2 h \). The information missing from the equation is the \(\frac{1}{3} \) (which is the number that goes in the first box), the radius, and the height. Since the diameter of the cone is 10 centimeters, the radius is 5 centimeters, so “5” goes in the second box. The height of the cone drawn to the center of the base creates a right triangle that has a hypotenuse of 13 centimeters, which is the slant height of the cone, and a leg of 5 centimeters, which is the radius of the base of the cone. The Pythagorean theorem can be used to find the length of the other leg of the triangle (the height of the cone), which is 12 centimeters, so “12” goes in the third box.
Item 16

Scoring Rubric

<table>
<thead>
<tr>
<th>Points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>The student correctly completes all three columns.</td>
</tr>
<tr>
<td>1</td>
<td>The student correctly completes one or two columns.</td>
</tr>
<tr>
<td>0</td>
<td>The student does not correctly complete at least one column.</td>
</tr>
</tbody>
</table>

Exemplar Response

The correct response is shown below.

The outcomes that make up event A are 2, 4, and 6. The outcomes that make up event B are 1, 2, and 3. The intersection of the two events is the only outcome they have in common, which is the number 2. The union of these two events is a list of all the outcomes for both events, which is the numbers 1, 2, 3, 4, and 6. The complement of B is a list of all the events that are not part of event B, which is the numbers 4, 5, and 6.
Item 17

Scoring Rubric

<table>
<thead>
<tr>
<th>Points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The student selects the correct options in both drop-down menus.</td>
</tr>
<tr>
<td>0</td>
<td>The student does not select the correct options in both drop-down menus.</td>
</tr>
</tbody>
</table>

Exemplar Response

The correct response is shown below.

\[\triangle ABC \cong \triangle NLM \text{ by } \triangle \text{SAS} \text{ congruence.} \]

“NLM” is correct because of the correspondence between the markings of the two triangles: the double tick mark is on side \(AB \) and on side \(NL \), an angle mark is on angle \(B \) and on angle \(L \), and the single tick mark is on side \(BC \) and on side \(LM \). “SAS” is correct because the markings show corresponding congruent angles between pairs of corresponding congruent sides.
Additional Sample Items

Item 18

Scoring Rubric

<table>
<thead>
<tr>
<th>Points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>The student correctly answers both Part A and Part B.</td>
</tr>
<tr>
<td>1</td>
<td>The student correctly answers either Part A OR Part B.</td>
</tr>
<tr>
<td>0</td>
<td>The student does not correctly answer either part.</td>
</tr>
</tbody>
</table>

Exemplar Response

Part A

The correct response is shown below.

This is the correct response because the independence of the events means that the probability of the bus arriving after 6:48 given that Emily arrives after 6:48 is the same as the probability of the bus arriving after 6:48.

Part B

The correct response is shown below.

This is the correct response because the probability of two independent events occurring together is found by multiplying the probabilities of the two events.
Item 19

Scoring Rubric

<table>
<thead>
<tr>
<th>Points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The student correctly graphs the line segment.</td>
</tr>
<tr>
<td>0</td>
<td>The student does not correctly graph the line segment.</td>
</tr>
</tbody>
</table>

Exemplar Response

The correct response is shown below.

This is the correct response because rotating a line segment 90 degrees about one of its endpoints results in a right angle. Therefore, the slopes of the line segments must be opposite reciprocals. The slope of the original line segment is $\frac{2}{5}$, and the slope of the rotated line segment is $-\frac{5}{2}$. The line segments are also congruent because rotations preserve length.
Additional Sample Items

Item 20

Scoring Rubric

<table>
<thead>
<tr>
<th>Points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The student correctly answers the question.</td>
</tr>
<tr>
<td>0</td>
<td>The student does not correctly answer the question.</td>
</tr>
</tbody>
</table>

Exemplar Response

The correct response is shown below.

The volume of a square pyramid is found by multiplying one-third times the height of the pyramid times the square of the side length of the base. For this pyramid, the volume is \(\frac{1}{3} \times 12 \times 5 \times 5 \). The volume of a cone is found by multiplying one-third times the height of the cone times pi times the square of the radius of the base. For this cone, the volume is \(\frac{1}{3} \times 12 \times \pi \times 5 \times 5 \). Both volumes have factors of \(\frac{1}{3} \), 12, 5, and 5, so the volume of the cone is pi times the volume of the pyramid.
END OF GEOMETRY
EOC ASSESSMENT GUIDE