Below are the formulas you may find useful as you take the test. However, you may find that you do not need to use all of the formulas. You may refer to this formula sheet as often as needed.

Linear Formulas

Slope Formula

\[m = \frac{y_2 - y_1}{x_2 - x_1} \]

Linear Equations

- **Slope-intercept Form:** \(y = mx + b \)
- **Point-slope Form:** \(y - y_1 = m(x - x_1) \)
- **Standard Form:** \(Ax + By = C \)

Arithmetic Sequence Formulas

- **Recursive:** \(a_n = a_{n-1} + d \)
- **Explicit:** \(a_n = a_1 + (n - 1)d \)

Exponential Formulas

Exponential Equation

\(y = ab^x \)

Geometric Sequence Formulas

- **Recursive:** \(a_n = r(a_{n-1}) \)
- **Explicit:** \(a_n = a_1 \cdot r^{n-1} \)

Compound Interest Formula

\(A = P \left(1 + \frac{r}{n}\right)^{nt} \)

Quadratic Formulas

Quadratic Equations

- **Standard Form:** \(y = ax^2 + bx + c \)
- **Vertex Form:** \(y = a(x - h)^2 + k \)

Quadratic Formula

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

Average Rate of Change

The change in the y-value divided by the change in the x-value for two distinct points on a graph.

Statistics Formulas

Mean

\[\bar{x} = \frac{x_1 + x_2 + x_3 + ... + x_n}{n} \]

Interquartile Range

\(IR = Q_3 - Q_1 \)

The difference between the first quartile and third quartile of a set of data.

Mean Absolute Deviation

\[\frac{\sum_{i=1}^{n} |x_i - \bar{x}|}{n} \]

The sum of the distances between each data value and the mean, divided by the number of data values.