	[image: image1.jpg]Microsoft IT Academy Program

Prepare your students with the 21st century
technology skills they need for successful careers

	

Greetings:

The Microsoft IT Academy (ITA) program provides a complete IT education solution that bridges the world of education with the world of work. The program is designed to help drive employability, digital literacy, technical and STEM-focused training and certification. In addition to boosting workforce preparedness, the ITA program also helps drive academic transition and pre-college preparation for students eager to pursue higher education by focusing on advanced technology and STEM-related subjects.
Microsoft is collaborating with the Georgia Department of Education to on-board train and to provide industry recognized certification to teachers and students through the ITA program.

It’s time to get your labs ready!
	[image: image2.png]

	Join us for a virtual training session to learn more. During this hour long session we will walk through all the requirements necessary to run the software and online (web based) E-Learning courses associated with Microsoft ITA program. Our training will include

· Downloading and setting up the lab licenses in the classroom/computer labs

· Identifying, communicating, and mitigating any known firewall issues that prevent access to ITA E-Learning courses

· Unblocking key URL’s necessary to successfully run ITA E-Learning courses

· Identity provisioning alternatives

· Options for Live ID identity creation

	Required Pre-Reading
	
[image: image3.emf]IT Director Information Guide 2.0 v4.docx

[image: image4.emf]IT Director Checklist 2 0 v4.docx

Click here to: Register Now!
	July 2012

	Sunday
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday
	Saturday

	29
	30 10:00 am PDT Microsoft IT Academy: Lab Readiness
	31
	
	
	
	

	August 2012

	Sunday
	Monday
	Tuesday
	Wednesday
	Thursday
	Friday
	Saturday

	
	
	
	1 10:00 am PDT Microsoft IT Academy: Lab Readiness
	2 10:00 am PDT Microsoft IT Academy: Lab Readiness
	3
	4

	5
	6 10:00 am PDT Microsoft IT Academy: Lab Readiness
	7 10:00 am PDT Microsoft IT Academy: Lab Readiness
	8 10:00 am PDT Microsoft IT Academy: Lab Readiness
	9 10:00 am PDT Microsoft IT Academy: Lab Readiness
	10
	11

	12
	13 10:00 am PDT Microsoft IT Academy: Lab Readiness
	14 10:00 am PDT Microsoft IT Academy: Lab Readiness
	15 10:00 am PDT Microsoft IT Academy: Lab Readiness
	16 10:00 am PDT Microsoft IT Academy: Lab Readiness
	17
	18

	19
	20
	21
	22
	23
	24
	25

	26
	27
	28
	29
	30
	31
	

Page 2 of 2

[image:]

[bookmark: _Toc323117642]Getting Started: IT Academy Program

IT Director Information Guide

[bookmark: _Toc323117644]Objectives – By following the IT Director steps, you will be able to successfully implement the IT Academy Program at your institution.

· The computer labs will need to meet the requirements necessary to run the software and E-Learning courses

· Downloading and setting up the lab licenses in the classroom

· Identifying, communicating, and mitigating any known firewalls that prevent access to the ITA E-Learning courses

· Unblocking key URL’s necessary to successfully run the IT Academy E-Learning courses

· Understanding the Live ID identity creation process and identifying the preferred solution

· Setting up the certification test center (if named as a test center site)

A recommended first step is to gather and input the information below into a master spreadsheet that the Project Manager, key statewide IT Implementation Managers, and the Microsoft Program Manager will reference and respond to as needed.

[image:]

Please refer to the IT Director Readiness Checklist

Lab Licenses

The IT Academy Program benefits include lab licenses for use in the computer lab environment. The lab licenses are downloaded from the Volume Licensing Service Center (VLSC).

It is recommended that the State Project Manager have one IT point person to coordinate the distribution of keys for the counties and schools in order to have a managed, secure allocation of keys for the lab environment. Instructions for accessing and downloading licenses are located in Appendix A. Office 2010 system requirements are outlined in Appendix B.

E-Learning System Requirements

For optimum user experience with the Microsoft IT Academy E-Learning systems, you must:

· Meet ITA E-Learning hardware and software requirements; use an approved browser and system platform. See full list in Appendix C

· Have Internet access with a minimum 56K modem

· Accept browser cookies

· Enable JavaScript on your Web browser

· Set your browser to refresh at every page

· Disable a firewall that blocks cookies or blocks access to a secure server

Unblocking URL’s

Turn off Pop-up Blocking for the following URL’s and add the email domains to your safe senders list:

· microsoft.com

· microsoftlearning.com

· live.com

· profile.microsoft.com/regsys

· tk5-exgwy-e802.partners.extranet.microsoft.com

· TK5EX14HUBC103.redmond.corp.microsoft.com (157.54.86.9)

· TK5EX14MBXC101.redmond.corp.microsoft.com (169.254.1.11)

· @*.microsoft.com

· @training.com

· @windowslivemail.com (65.55.238.140 - 65.55.238.142)

· @partners.extranet.microsoft.com

· @microsoft.com

· @partners.extranet.microsoft.com (10.251.56.169)

· @redmond.corp.microsoft.com (157.54.86.9) (169.254.1.11)

Add to Trusted Sites / Open ports

· microsoft.com

· microsoftlearning.com

· live.com (https://login.live.com for signing into ITA sites with a Live ID)

· profile.microsoft.com

· Microsoftelearning.com

· Ports 80 and 443

Open required outbound ACL’s to TCP ports 80/443 for the following IP ranges*(Windows Live Id Services). Schools that do not have any outbound Access restrictions to the WLID services today will not need to make any changes. *Does not apply to schools with Federated solution.

New Networks

· 157.55.134.0/24

Current Networks

· 65.54.165.128/27

· 65.54.165.160/27

· 65.54.186.0/27

· 65.54.186.32/27

· 65.54.186.64/27

· 65.54.186.96/27

· 65.54.186.128/27

· 65.54.186.160/27

· 65.54.186.192/27

· 65.54.186.224/27

· 65.54.234.0/26

· 65.54.234.64/26

· 65.54.240.64/27

· 65.54.254.96/28

· 65.54.254.128/28

· 65.54.248.192/27

· 65.54.248.224/27

· 65.54.194.192/27

· 65.54.204.0/27

· 65.54.205.0/27

· 65.54.208.224/27

· 65.54.212.192/27

· 65.54.213.160/27

· 65.54.133.128/27

· 65.54.142.224/27

· 65.54.143.96/27

· 65.54.145.192/27

· 65.54.204.192/26

· 65.54.206.128/26

· 65.54.215.192/27

· 65.54.205.48/28

· 65.54.133.48/28

· 65.54.208.128/26

· 65.54.216.160/27

· 65.54.217.160/27

· 64.4.12.0/25

· 65.54.143.128/25

Add to bypass list on the school proxy server or firewall

· 65.55.12.245 Profile.microsoft.com

· 74.43.216.128 E-Learning Instructor site

· 74.43.216.125 E-Learning student site

· http://profile.microsoft.com [https]

· http://login.live.com [https]

Plug-ins

Install Silverlight http://www.silverlight.net/downloads

Install ActiveX Control to ensure students can start the virtual labs within the E-Learning https://lva.msllab.microsoft.com/UnifiedLabViewer/checkpages/en-US/installVmrc_en-US.htm

Firewalls

A firewall is a system designed to prevent unauthorized access to or from a private network.

If your computer is located behind a school firewall, you might not be able to access portions of the E-Learning Web site from work. School firewalls sometimes block JavaScript, or won't let you log in to a secure server -- which the E-Learning requires.

· If your school firewall blocks JavaScript, you won't be able to enter the E-Learning from your computer.

· If your school firewall allows JavaScript but doesn't allow access to a secure server, you won't be able to access the E-Learning.

While there are many unknown firewalls, there are some that Microsoft Learning and customers have uncovered. We encourage Member Schools to identify and inform Microsoft of firewalls that are discovered. Microsoft will work to create documentation for known issues and solutions as identified for sites experiencing issues with firewalls.

An example includes: Gaggle Users – Request to have institutional setting changed to “Higher Education.” High School setting will block the LiveID verification email.

Live ID Creation Process

IT Academy is accessed using two authentication systems: Live ID and Federation (Live)

LIVE ID

There are several ways to register faculty and students with a Live ID account. The identity management solution the district has in place or is planning to use may affect the method by which you choose to provision Live ID’s. Below are four scenarios with the recommended option for assigning Live IDs:

1) If the institution is currently using Live@Edu for faculty and/or students, then Live@Edu should be used for provisioning Live ID for IT Academy.

2) If the institution is not using Live@Edu currently but is considering Live@Edu or Office 365 in the near future, then the Live@Edu should be deployed prior to using ITA E-Learning resources.

3) If the institution is not using Live@Edu and wants to assign a Live ID to all students or an individual class without allowing students access to email, use the Live ID Creator Tool.

4) If a customer wants the students and faculty to sign up individually for a Live ID, then the student and faculty can sign up for an individual Live ID at https://signup.live.com.

Scenarios 1 and 2

Live@Edu - Live@edu offers educational institutions free hosted, co-branded communication and collaboration services for students, faculty, and alumni. With 10 gigabytes (GB) of e-mail storage, it’s the no-cost Outlook Live e-mail service built on Exchange 2010. Live@edu provides the familiar and reliable Outlook Web Access (OWA) co-branded with a school’s name and logo, helping students build lifelong ties to their educational institution. And with 25 GB of additional file storage, Live@edu is more than just e-mail—it includes access to other services that enhance the school’s ability to collaborate and communicate, including calendars, document sharing, instant messaging, video chat, mobile e-mail, and more.

Complete instructions for assigning Live ID’s utilizing Live@Edu is listed in Appendix D.

Scenario 3

Live ID Creator – Live ID Creator is a tool for teachers or administrators to generate Live ID’s for an entire school or individual class for student use. Simple steps to create these Live ID’s can be found in Appendix G.

Scenario 4

Manual Live ID Creation – If a school does not want to assign Live ID’s via Live@EDU or through the Live ID Creator, it is possible for each instructor and student to create their own Live ID for accessing the ITA Instructor and Student E-Learning Portals. Individuals can create their own Live ID at https://signup.live.com. .

NOTE: There are rules which prohibit more than 3 people signing up for a Windows LIVE ID per day from the same external IP address, thus blocking access to the IT Academy E-Learning site. If the school is recommending that teachers and students sign up for Live ID’s individually, it is recommended the school or educator takes one of the two options below:

Option 1 - Live ID as a homework assignment

· The instructor assigns establishing a Live ID account as a homework assignment and students sign up at home.

· Students will create Live ID using an email address.

· The student will be asked to verify the email address and should also complete as part of the homework assignment.

Option 2 - Whitelisting the school Internet Protocol (IP) Address range (We recommend you whitelisting your school no matter which option you select. This is a simple process.)

As a measure to ensure no delays in accessing the E-Learning portal, it is recommended the following information be obtained and submitted to https://support.live.com/default.aspx?productkey=wlidipexc . Please complete and submit whitelisting form. You will be asked the following information:

· IP or IP Range

· School Name

· Domain

 You will be notified by the Windows Live ID team when your school has been whitelisted. This is a very important step in making your school IT ready for the use of the IT Academy program.

· You can go to http://whatismyip.com to see your external IP address.

Important Note:

· IP ranges should be kept as narrow as possible – IP ranges that are too broad will not be allowed.

· No private/internal IP addresses will be accepted. Whitelisting is based off external IP address.

		

		Private/internal IP address ranges

		

		10.0.0.0 – 10.255.255.255

		

		172.16.0.0 – 172.31.255.255

		

		192.168.0.0 – 192.168.255.255

		

		169.254.0.0 - 169.254.255.255

[bookmark: _Toc287455035]Federation

The IT Academy program allows two authentication methods for member site and e-Learning access; Live ID and federation. Live ID is a single sign-on service developed and provided by Microsoft that allows users to log in to many websites using one account. Federation ensures customers maintain control over identity management while still providing single sign-on authentication to key IT Academy resources. Specifically, federation is provided by the IT Academy program and Microsoft giving customers as an alternative means of authenticating users.

Federation enables state, district or institution Identity Providers (IDP) to establish a trust relationship between existing internal solutions for authenticating students and educators with Microsoft. This trust relationship will only pass the required information to access the IT Academy Program Member and E-Learning sites.

When federation is in place, teachers, staff and students at the federated institution can log in to the ITA Member Site and E-Learning sites using their existing school credentials.

Certiport Test Center Set Up

Before administering Microsoft Office Specialist (MOS) or Microsoft Technology Associate (MTA) exams, a school needs to set up their testing site. Instructions for setting up a test center are in Appendix E. In addition to the instructions provided in this document, tutorials, videos, FAQ’s and other key information can be found at www.certiport.com.

Prometric Test Center Set Up

To administer Microsoft Certified Professional (MCP) exams, a school must work with exam delivery provider, Prometric, to set up a test center on campus. See Appendix F for steps to become an authorized Prometric test center. More information can be found at http://www.prometric.com/ITA.

APPENDIX

Appendix A – Accessing the Volume Licensing Service Center

To register for the Volume Licensing Service Center:

1. Access the Volume Licensing Service Center (VLSC) at https://www.microsoft.com/licensing/servicecenter

1. On the Welcome to the Volume Licensing Service Center homepage, click Sign In

1. Enter your Windows Live ID and password

1. Click Sign In

1. First-time users must enter their business e-mail address. Enter the business e-mail into both fields, then click Submit

1. When you click Submit, an e-mail is sent to confirm ownership of the Business E-mail address provided

1. Go to the inbox for the business e-mail address you provided

6. Open the e-mail from Volume Licensing Service Center with the subject line Thank You for Registering with the Volume Licensing Service Center

6. Click the link in the e-mail to confirm your ownership of the business e-mail address

NOTE If you do not receive an e-mail notification, then check your junk folder in your e-mail program. Ensure that you enter @*.microsoft.com to your Safe Senders list. If you use Microsoft Outlook, turn off automatic filtering by selecting the Home tab. Click the Junk drop-down menu, select Junk E-Mail Options, and then select No Automatic Filtering.

[image:]

[image:]

[image:]

Appendix B – Office 2010 Download System Requirements

		Component

		Requirement

		Computer and processorOffice 2010 Requirements

		500-megahertz (MHz) processor or higher; 1 gigahertz (GHz) required for Outlook with Business Contact Manager

		Memory

		256 megabytes (MB) of RAM or higher; 512 MB recommended for graphics features, Outlook Instant Search, Outlook with Business Contact Manager, Communicator, and certain advanced functionality

		Hard disk

		3.5 gigabyte (GB) available disk space

		Display

		1024 × 768 or higher-resolution monitor

		Operating system

		 Windows XP (must have SP3) (32-bit), Windows 7, Windows Vista with Service Pack (SP) 1, Windows Server 2003 with SP2 and MSXML 6.0 (32-bit Office only), Windows Server 2008, or later 32- or 64-bit OS.

		Graphics

		Graphics hardware acceleration requires a DirectX® 9.0c graphics card with 64 MB or more video memory.

		Additional

Requirements

		Certain Microsoft(R) OneNote(R) features require Windows(R) Desktop Search 3.0, Windows Media(R) Player 9.0, Microsoft(R) ActiveSync(R) 4.1, microphone, audio output device, video recording device, TWAIN-compatible digital camera, or scanner; sharing notebooks requires users to be on the same network. Click here for a full list of additional requirements.

		Other

		Product functionality and graphics may vary based on your system configuration. Some features may require additional or advanced hardware or server connectivity; www.office.com/products.

512 MB RAM recommended for accessing Outlook data files larger than 1GB.

2 GHz processor or faster and 1 GB RAM or more recommended for OneNote Audio Search. Close-talking microphone required. Audio Search not available in all languages.

Appendix C – E-Learning Hardware and Software Requirements

				Hardware/Software Minimum Requirements

				Processor:

		System Platforms:

		Browsers:

		Flash:

Plug-ins:

		ActiveX:

		Media Player:

		XML:

		Screen Resolution:

		Audio:

		Modem Speed:

				A Pentium II, 256 MB RAM with a processor speed greater than or equal to 400 MHZ

		Microsoft Windows XP SP3, Microsoft Windows Server 2003 or higher

		Microsoft Internet Explorer 7.0 or higher

(Courses created after July 2010 support Firefox 3.5.9 and Firefox 3.6.3.)

		Adobe Flash 9.0 or higher (1MB disk space needed to install)

Silverlight 4.0 or higher

		Microsoft Virtual Server ActiveX control (required for virtual labs; 1MB disk space needed to install)

		Microsoft Windows Media Player 9.0 or higher

		Microsoft XML Core Services 3.0 or higher

		A Super VGA monitor with minimum screen resolution 1024x768, with 16-bit color

		A sound card, speakers, or headphones are recommended

		Internet bandwidth of 56K or faster, broadband is recommended

		

		

		

Helpful Links:

		Requirement

		How to Detect and Fix

		Meet ITA E-Learning hardware and software requirements as listed at http://itacademy.microsoftE-Learning.com/help/systemRequirements.aspx

		These requirements can be automatically detected by Running the Scan from http://itacademy.microsoftE-Learning.com/help/systemRequirements.aspx

		Install Silverlight 4.0

		Download Silverlight from http://www.microsoft.com/getsilverlight/Get-Started/Install/Default.aspx

				Browser Settings

		These are the required browser settings you must have to access Microsoft E-Learning.

1. Accept browser cookies

1. Enable JavaScript on your Web browser

1. Refresh browser at every page visit

		Enable these browser settings by following the instructions at: http://itacademy.microsoftE-Learning.com/help/gsBrowserInformation.aspx

Information about the use of cookies by ITA members can be found at: http://itacademy.microsoftE-Learning.com/help/gsCookies.aspx

Appendix D – Live@edu Setup

[bookmark: _Toc290216737]Utilizing Live@edu with ITA

Live@edu utilizes Microsoft Windows LiveID’s. Windows LiveID’s are required to access the IT Academy sites. Create your sign in credentials (e-mail and password) once, then use them everywhere a Windows Live ID is required. Users that are provisioned into Live@edu already have a Windows LiveID account that can be used to access IT Academy resources. Separate LiveID’s will not need to be created to access IT Academy websites. The benefits of this are:

1) A single LiveID for access to multiple Microsoft services.

2) Managed LiveID accounts that the school or school system owns and can modify as needed.

3) Ability to leverage the Live@edu mass provisioning services.

[bookmark: _Toc290216738]Creating LiveID accounts for your institution’s end users via Live@edu

The following sections describe typical institutional scenarios, and how users can be supplied with LiveID’s in each case.

[bookmark: _Toc290216739]Scenario #1 - All users (Students, Faculty and Staff) have mailboxes or mail user accounts already provisioned with Live@edu

In this scenario, the institution has or will onboard all users into Live@edu. In this scenario, no other action is necessary to utilize the LiveID’s associated with each user account for IT Academy. All that is required is to follow the setup instructions for IT Academy as described in IT Academy documentation, skipping the creation of LiveID’s for your users. For further information on Live@edu please see: http://www.microsoft.com/liveatedu.

[bookmark: _Toc290216740]Scenario #2 - Students with Mailboxes on Live@EDU and Faculty and Staff on premise

[bookmark: _Toc290216741]In this scenario, the institution has or will onboard students into Live@edu for e-mail but the Faculty and Staff are not on the Live@edu platform. In this scenario you may wish to create Faculty and Staff accounts into Live@edu, but not create mailboxes for them, only LiveID’s. There are a few steps to follow in order to manage the creation of LiveID’s for users. Please see Scenario #3c below.

Scenario #3 - E-mail platform in place for users, no plans to migrate in the near term

In this scenario, the institution already has an e-mail solution in place for their students and/or faculty and staff. This could be on an on-premises service, or hosted service, but it is NOT on Live@edu/Outlook Live. There are a few steps to follow to be able to manage the creation of LiveID’s for users through Live@edu.

[image:]3a. Enroll the e-mail domain with Live@edu

Skip to 3c if domain is already enrolled

· Navigate to http://get.liveatedu.com/

· Click Enroll Your School

· Select Ready to enroll and click Continue

· Complete Step 1 of 2: Identify your institution and domain. In the Domain box, enter the existing e-mail domain suffix used for your user e-mail service. E.g. smail.pcd.edu

· Ensure the mail service selected is Outlook Live. The mail service will only be used to provision mail user accounts with LiveID’s, not mailboxes

· Click Continue

	next

· Create an Administrator ID for your domain on the LiveID service

· Complete the remaining details, and click I Accept to agree to the Microsoft Live@edu terms of use

[image:]next

· At the Thank you for enrolling in Live@edu page, click Continue to navigate to the Service Management Portal

3b. Verify ownership of the domain using a CNAME record

· Note the warning message that you must now confirm your domain ownership; this message will disappear once that task has been carried out

· Note the unique CNAME record that Microsoft has generated for your domain. This record must be created in your EXTERNAL, internet-facing DNS

· Create the CNAME record creation as directed. Once the recorded has propagated, refresh the Service Management Portal page; this may take a few attempts before the service is activated

[image:]

3c. Create Exchange MailUsers with LiveID’s for end users

Once the domain is fully activated, you will now be able to create user accounts. This can be achieved in a number of ways using PowerShell, but what follows is a description of how to do this with a CSV file and a slightly modified version of the CSV_Parser script we provide. As the MailUser objects that will be created will never be viewed, the information used to create them from a CSV file can be kept very simple.

The CSV file should have the following format:

Action,Type,Name,EmailAddress,DisplayName,Password,ForceChangePassword

Add,Mailuser,jimjones,jimjones@smail.contososchool.info,Jim Jones,pass1234,1

Add,Mailuser,scottblack,scottblack@smail.contososchool.info,Scott Black,pass3456,1

For further guidance, visit: http://help.outlook.com/en-us/140/cc713521.aspx.

Once the CSV file is ready, the upload can commence. To do this, the administrator will need a machine equipped with PowerShell and Windows Remote Management. Instructions for this are here: http://help.outlook.com/en-us/140/cc952756.aspx.

The updated PowerShell script is here, please remove the .txt extension before use.

The syntax for running the script is as follows, update paths and filenames accordingly:

c:\tools\CSV_Parser_R4_WLID.PS1 -UsersFile C:\tools\contoso.csv -LiveCredential $Livecred -LogDirectory C:\Logging\ -ValidateAction $true

Once accounts have been completed, users can log in with their new LiveID!

[bookmark: _Toc290216742]

Additional Optional Tasks and documentation for all scenarios

Please ensure you review all of the Live@edu onboarding and deployment documentation which can be found at http://www.microsoft.com/liveatedu.

Appendix E - Certiport Testing Center Setup

To register your Certiport Test Center for MOS and MTA exams:

1. Go to www.certiport.com

1. Click the white Register A Testing Center button on the right-hand side

1. Login or first Register as a New User

1. Fill in Organization contact information for New Certiport Center registration (you are not a child site)

1. View and accept the Certiport Center Agreement

1. Assign additional Admins and Proctors as necessary: see Certiport Test Center documentation

Appendix F - Setting up a Prometric Test Center

To register as a Prometric Test Center for MCP exams:

1. Go to http://www.prometric.com/ITA/default.htm.

2. Review Test Center Requirements – understand what it takes to become an authorized Prometric test center. During this step you must verify that your site meets our minimum technical, facility and staffing requirements.

3. Apply – once you have reviewed the requirements, submit a simple online application to being the process of becoming a Prometric test center. The application can be found at http://www.prometric.com/ITA/apply.html.

4. Application Review – application will be reviewed to ensure it has been completed accurately and that your site meets the minimum requirements.

5. Approval and Contract – once your application is approved, a Prometric representative will contact your site to provide the contract package. You will be asked to review the contract in detail, complete and submit the necessary documentation.

6. Test Center Setup – after contract has been approved, the Prometric Site Readiness Team will work with your staff to complete the necessary installation steps and ensure your personnel are certified to administer IT exams.

7. Scheduling – after test center setup is completed your organization will be contacted by the Scheduling Team to determine dates for administering exams.

Appendix G: Using Live ID Creator

Create Windows Live ID credentials for your students by using the Windows Live ID Creator. You can immediately begin creating Windows Live IDs on behalf of your students. Windows Live IDs created via this tool share the “itasignon.com” domain. With the Live ID Creator Tool, you have two options for creating Live ID accounts on behalf of your students at https://itasignon.microsoft.com/MemberAuthorizationPage.aspx.

Option 1 – Enter up to 30 desired user names at a time

With this option, 30 user name fields are available for you to enter your desired user names and then submit. Use this option when you need to create Windows Live IDs for a particular class or in cases where you prefer to create them in increments of up to 30 at a time.

Option 2 – Upload a file containing up to 300 desired user names

Upload a comma-separated values (CSV) file containing up to 300 desired user names. Use this option when you need to produce a large quantity of Windows Live IDs, and/or when you have an existing file or data upon which you want to base your Windows Live ID user names. For example, you may have a roster from which you want to submit a particular column of data as the desired Windows Live IDs.

May 21, 2012

[image:]© Microsoft Corporation. All rights reserved.

image1.emf

Institution

IT

Director

First

Name

IT

Director

Last

Name

IT

Director

Email

IT

Director

Phone

Deployment

Method

of

Computer

Labs

Extranet

IP Range

Utilized

Certification

Test Site

Begin

Certification

Testing

Live@Edu Jan

bulk Upload Feb

Manual Mar

Federation Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

image2.png

Exploring Volume Licensing Service Center

Welcome

image3.png

Exploring Volume Licensing Service Center

Licensed Product Downloads

image4.png

Exploring Volume Licensing Service Center

Product Keys

o con e 8 ot our s
Volume Learse productker ncits
A S s et

For additional information around dowrload optionsses:
it/ v microsoft com/licensng exising-ustomers/product-actiation.

image5.png

Sign up for Microsoft Live@edu

Live@edu provides enterprise-class hosted e-mail and collaboration software, co-
branded for your school at no cost. Prepare your students for the real world with the
professional tools most familiar in the workplace.

Step 1 of 2: dentify your institution and domain
Al information is required.

Institution name

Contoso School

Institution type:
Other -

Institution Web address:

microsoft.com

Country/Region:

United States -

Address:
One Microsoft Way

Washington -

Zip code/Postal code:
98052

Domair

@ smail.contososchoolinfo is eligible for
enrollment.

smail.contososchoolinfo

Mail service:
Your mail service is Outlook Live.

Go back

image6.png

Step 2 of 2: Create your administrator account

Allinformation is required.

Administrator ID:

@ admin@smail.contososchool.nfo is
available.

admin @smail.contososchoolinfo

Create a password:

6-character minimum; case sensitive

First name:

Jack

Last name:

Jones

Phone number:
555-878-0898

Contact e-mail addres:

jack@smail.contososchoolinfo
Provide a valid e.mail address

“This helps us prevent automated
programs from creating accounts and
sending spam.

Characters:
208HIZ36
Enterthe & characters you see

We may send you information and offers about Microsoft Live@edu products and
services to your contact e-mail address.

Clicking 1 accept means that you agree to the Microsoft Service Agreement and
Privacy Statement for the new administrator's account (a Windows Live ID) being
created for you. It also means that you agree to the terms of the Live@edu program
in the Microsoft Live@edu Terms of Use and the Custom Domains/Admin Center on
behalf of your institution.

Go back

image7.png

To prove domain ownership, create the following DNS record:

DNS record type: CNAME
s 564368999.smail.contososchoolinfo
Value: domainslive.com

For further instructions, select your domain registrar below. Typically, this is also your domain hosting service.

Domain registrar: Me. | control my own DNS ¥ what s this?

image8.emf

CSV_Parser_R4_WLID.ps1.txt

CSV_Parser_R4_WLID.ps1.txt

Copyright (c) Microsoft Corporation. All rights reserved.

THIS CODE IS MADE AVAILABLE AS IS, WITHOUT WARRANTY OF ANY KIND. THE ENTIRE RISK

OF THE USE OR THE RESULTS FROM THE USE OF THIS CODE REMAINS WITH THE USER.

Synopsis: This script is designed to create recipients in Exchange Labs based on a CSV file containing data.

#

#

Usage example:

#

Populate credentials to variable:

$cred = Get-Credential

-or-

$Username = "admin@mydomain.com"

$Password = ConvertTo-SecureString 'MyPassword' -AsPlainText -Force

$Livecred = New-Object System.Management.Automation.PSCredential $Username, $Password

#

-RemoteURL (Optional) is dependent on the Datacenter for Exchange Labs

#

-LogDirectory (Optional) is the directory where log files should be created. Defaults to temp directory.

-LogVerbose turns on debug logging. Specify this switch parameter if requested by Microsoft Support.

-ValidateAction (Optional) is $true/$false for turning action validation on or off.

Action validation has an overhead of a few seconds per object.

If you are certain the action (Add/Update/Delete) does not need validation, you can turn it off.

The default value is $true for validation.

-StartRow (Optional) is the numeric row of the CSV file to start importing

-EndRow (Optional) is the numeric row of the CSV file to stop importing

#

c:\tools\CSV_Parser_R4_WLID.PS1 -UsersFile C:\tools\contoso.csv -LiveCredential $Livecred -LogDirectory C:\Logging\ -ValidateAction $true

#

Last Modified by rwakeman and jonncha March 10th, 2010 to include support for assigning LiveIDs for MailUsers.

#

Param(

	[string] $UsersFile = $(throw "Missing parameter: The -UsersFile parameter is required."),

	[string] $RemoteURL = "https://ps.outlook.com/powershell",

	[System.Management.automation.PSCredential] $LiveCredential = $(throw "Missing parameter: The -LiveCredential parameter is required."),

	[string] $LogDirectory = $null,

	[switch] $LogVerbose,

	[bool] $ValidateAction = $true,

	[int]$StartRow = 1,

	[int]$EndRow = 1000000

)

Variable Declarations

Suppress warnings during script execution

SilentlyContinue - continues running with no output

Continue - Print error and continue (default action)

Inquire - Ask users whether they want to continue, halt, or suspend

Stop - Halt execution of the command or script

$WarningPreference = "SilentlyContinue"

Opens log file

$this_date = Get-Date

$format_date = $this_date.ToString("d") -replace "/", ""

$file_date = $format_date + "_" + $this_date.TimeOfDay.Hours + $this_date.TimeOfDay.Minutes + $this_date.TimeOfDay.Seconds

Log is saved on the directory defined here

$file_name = "CSV_Parser_$($file_date).txt"

if ([String]::IsNullorEmpty($LogDirectory))

{

	$LogDirectory = "$Env:temp"

}

$file_name = $LogDirectory.TrimEnd('\') + "\$($file_name)"

Global runspace variables

$Script:RS = $null

$Script:RSOpened = $false

Max number of broken runspaces/retries

[int] $Script:MaxRSRetry = 30

[int] $Script:RSCounter = $null

[int] $Script:RSConnectionIssues = 0

[int] $Script:CurrentRow = 0

[bool] $Script:HasChanges = $false

[bool] $Script:HasRecipientChanges = $false

[bool] $Script:hasMailChanges = $false

[bool] $Script:RetryPass = $false

$Script:Names = New-Object System.Collections.Specialized.StringCollection

[System.Collections.Hashtable] $Script:AddedMbxes = New-Object System.Collections.Hashtable

#update warning message

$script:updateWarningMsg

#Script version

$scriptVersion="14.0.4.2"

#Exchange version

$script:isR3 = $false

$minimumR4ScriptVersion = new-object system.version "14.0.4.0"

Variable Declarations End

Function Declarations

Adds to log file

function log

{

	Param($header,$Message)

	$log_date = Get-Date

	echo "[$($log_date)]: [$($header)]: $($Message)" >> $file_name

}

Reconcile new value with current value and add to log file

function addProperty

{

	Param([System.Collections.ArrayList]$Props,[System.Collections.Hashtable]$OldValues, $PropLog, $NewValue)

	

	$PropName = $PropLog.Trim()

	

	$CompareValue1 = $null

	$CompareValue2 = $null

	

	# OldValues would be populated if $ValidateAction = $true and the object exists

	$OldValue = $null

	if ($OldValues.Contains($PropName))

	{

		$OldValue = $OldValues[$PropName]

	}

	if ($OldValue -ne $null)

	{

		if ($OldValue.GetType().ToString() -eq "System.Collections.ArrayList")

		{

			if ($OldValue.Count -eq 0)

			{

				$OldValue = $null

			}

			else

			{

				# We cannot compare two ArrayLists directly

				# Convert the ArrayList into a comparible string of all values

				$CompareValue1 = ""

				$sorted = $OldValue.ToArray()

				[Array]::Sort($sorted)

				foreach ($val in $sorted)

				{

					$CompareValue1 = $CompareValue1 + $val

				}

			}

		}

		else

		{

			if ([String]::IsNullorEmpty($OldValue.ToString()))

			{

				$OldValue = $null

			}

			else

			{

				$CompareValue1 = $OldValue

			}

		}

	}

	

	if ($NewValue -ne $null)

	{

		if ($NewValue.GetType().ToString() -eq "System.Collections.ArrayList")

		{

			if ($NewValue.Count -eq 0)

			{

				$NewValue = $null

			}

			else

			{

				# We cannot compare two ArrayLists directly

				# Convert the ArrayList into a comparible string of all values

				$CompareValue2 = ""

				$sorted = $NewValue.ToArray()

				[Array]::Sort($sorted)

				foreach ($val in $sorted)

				{

					$CompareValue2 = $CompareValue2 + $val

				}

			}

		}

		else

		{

			if ([String]::IsNullorEmpty($NewValue.ToString()))

			{

				$NewValue = $null

			}

			else

			{

				$CompareValue2 = $NewValue

			}

		}

	}

	

	# Compare the two values to determine if there are changes

	$modified = " "

	if ($CompareValue1 -ne $CompareValue2)

	{

		$modified = "*"

		$Script:HasChanges = $true

		

		# Email Addresses & Custom Attributes require a separate cmdlet call

		# We do not want to make that call unless neccessary

		if (($PropName.StartsWith("EmailAddresses")) -or ($PropName.StartsWith("CustomAttribute")))

		{

			$Script:hasMailChanges = $true

		}

		else

		{

			$Script:HasRecipientChanges = $true

		}

	}

	

	if ($NewValue -eq $null)

	{

		# Preserve the current value if provided

		$NewValue = $OldValue

	}

	else

	{

		# Log the change

		$ChangeValue = ""

		if (($CompareValue1 -ne $CompareValue2) -and ($CompareValue1 -ne $null))

		{

			$ChangeValue = " ($($OldValue))"

		}

		logField "$($modified)$($PropLog)" "$($NewValue)$($ChangeValue)"

	}

	

	$Index = $Props.Add($NewValue)

}

function logField

{

	Param($PropName,$NewValue)

	echo " $($PropName) = $($NewValue)" >> $file_name

}

function logExit

{

	Param($header,$exitMessage)

	log $header $exitMessage

	echo $header $exitMessage

	if ($Script:RSOpened -eq $true)

	{

		clearRS

	}

	break

}

function error_logExit

{

	Param($header,$exitMessage,$moreInfoUrl)

	$moreInfo = "More information available at $moreInfoUrl"

	echo "Error = $($exitMessage)"

	echo $moreInfo

	log $header "$exitMessage $moreInfo"

	if ($Script:RSOpened -eq $true)

	{

		clearRS

	}

	showUpdateMessage

	throw

}

##

Runspace Functions

##

function openRS

{

	$error.Clear()

	# Creating new runspace. AllowRedirection parameter automatically directs to the correct Datacenter depending on the tenant name.

	$Script:RS = New-PSSession -ConfigurationName microsoft.exchange -ConnectionUri $RemoteURL -Credential $LiveCredential -Authentication Basic -AllowRedirection -ErrorAction SilentlyContinue

	if ([String]::IsNullorEmpty($error[0]))

	{

		log "Success" "Runspace Creation was successful = $($RemoteURL)"

		if ($Script:RSOpened -eq $false)

		{

			$Script:RSOpened = $true

		}

	}

	else

	{

		retryRS

	}

}

function clearRS

{

	$error.Clear()

	

	# Removes runspace

	$Script:RS | Remove-PSSession -ErrorAction SilentlyContinue

	if ([String]::IsNullorEmpty($error[0]))

	{

		log "Terminating" "Successfully cleared Runspace = $($RemoteURL)"

	}

	else

	{

		if ($LogVerbose -eq $true)

		{

			$errcheck = $null

			$errcheck = $error[0].exception | select *

			log "Debug" $errcheck

		}

		log "Terminating" "Clearing Runspace was unsuccessful. Error = $($error[0])"

	}

}

function retryConnectionIssues

{

	## I/O error condition, typically either a network connectivity issue or an incorrect URI

	$Script:RSConnectionIssues = $Script:RSConnectionIssues + 1

	if ($Script:RSConnectionIssues -gt 10)

	{

		log "Error" "Connectivity issues are continuing to prevent a runspace from being created. Error code: 995. Please check the the URL ($($RemoteURL)). Waiting for 5 mins before retry"

		sleep -seconds "300"

	}

	else

	{

		log "Error" "Connectivity issues are preventing a runspace from being created/persisted. Error code: 995. Please check the the URL ($($RemoteURL)). Retrying in 30 secs"

		sleep -seconds "30"

	}

}

function retryErrorGeneric

{

	param($msg,$waitTime)

	log "Error" $msg

	sleep -seconds $waitTime

}

function retryRS

{

	$errcheck = $null

	$errcheck = $error[0].exception | select *

	## debuging code for runspace open

	if ($LogVerbose -eq $true)

	{

		log "Debug" $errcheck

	}

	

	$Script:RSCounter = $Script:RSCounter + 1

	if ($Script:RSCounter -gt $Script:MaxRSRetry)

	{

		## too many retries

		error_logExit "Terminating" $connectionErrors["default"][0] $connectionErrors["default"][1]

	}

	

	$errorcode = $errcheck.errorcode

	if ($errorcode -eq $null -or !$connectionErrors.ContainsKey($errorcode))

	{

		$errorcode = "default"

	}

	if ($Script:RSOpened -eq $false -and $errorcode -ne "default")

	{

		error_logExit "Terminating" $connectionErrors[$errorcode][0] $connectionErrors[$errorcode][1]

	}

	## if specific function defined run it, otherwise get message

	## and wait time from error definition map

	if ($connectionErrors[$errorcode][2].GetType().Name -ieq "ScriptBlock")

	{

		& $connectionErrors[$errorcode][2]

	}

	else

	{

		retryErrorGeneric ($connectionErrors[$errorcode][2] -f $error[0]) $connectionErrors[$errorcode][3]

	}

	echo "Retrying..."

	openRS

}

function CheckRSState

{

	echo "checking runspace status"

	$rsstate = $null

	$rsstate = (Get-PSSession -InstanceId $Script:RS.InstanceId).state

	# echo "Runspace: "$rsstate

	log "Checking" "Runspace: $($rsstate)"

	if ($rsstate -ne "Opened")

	{

		log "Error" "Runspace $($rsstate)"

		clearRS

		openRS

	}

}

function checkVersionStatus

{

	log "Pre-Validation" "Provisioning with csv_parser.ps1 version ($scriptVersion)."

	echo "Provisioning with csv_parser.ps1 version ($scriptVersion)."

	$toolInformation = Invoke-Command -Session $Script:RS -ErrorAction SilentlyContinue -arg $scriptVersion {param ($version) get-toolInformation -Identity csvparser -version $version}

	if ($toolInformation -ne $null)

	{

		

		# if minimum supported version is still in R3 script range we're running against R3

		$minimumSupportedVersion = $toolInformation.MinimumSupportedVersion

		$script:isR3 = ($minimumSupportedVersion -ne $null -and $minimumSupportedVersion -lt $minimumR4ScriptVersion)

		$updateUrl = $toolInformation.UpdateInformationUrl

		if ($toolInformation.VersionStatus -ieq "NewerVersionAvailable")

		{

			$script:updateWarningMsg = "There is a newer version of this script available for download. More information available at $updateUrl"

			showUpdateMessage

		}

		elseif ($toolInformation.VersionStatus -ieq "VersionNoLongerSupported")

		{

			error_logExit "Terminating" "This script version ($scriptVersion) is no longer supported. Please update to the latest version." $updateUrl

		}

	}

	

}

function showUpdateMessage

{

	if ($script:updateWarningMsg -ne $null)

	{

		write-host $script:updateWarningMsg

		log "Update" $script:updateWarningMsg

	}

}

##

processFile

##

The function will go through all the rows in $UserFile, taking the appropriate action

It will mark the row as Done, unles there has to be a retry, in which case will mark

the row as Retry.

Any row already marked as Done will be skipped.

Any row already marked as Retry will be marked as Done after one retry.

function processFile

{

	Param($UserFile)

	$Script:CurrentRow = 0

	

	# Filters records and calls appropriate cmdlets

	foreach ($user in $UserFile)

	{

		$continue = $false

		$Script:CurrentRow = $Script:CurrentRow + 1

		if (($Script:CurrentRow -ge $StartRow) -and ($Script:CurrentRow -le $EndRow) -and (![String]::IsNullorEmpty($user)))

		{

			if ([String]::IsNullorEmpty($user.Name))

			{

				log "Error" "Can not import user at row $($Script:CurrentRow). Please check your CSV file format"

				echo "Can not import user at row $($Script:CurrentRow). Please check your CSV file format."

			}

			else

			{

				# Validate the Action

				$continue = $true

				switch ($user.Action)

				{

					$null {$user.Action = "Add"}

					"Add" {}

					"Create" {$user.Action = "Add"}

					"Update" {}

					"Modify" {$user.Action = "Update"}

					"Delete" {}

					"Remove" {$user.Action = "Delete"}

					"PasswordReset" {}

					"Set" {}

					"RetryAdd" {}

					"RetryUpdate" {}

					"RetryDelete" {}

					"Done" {$continue = $false}

					default

					{

						$continue = $false

						log "Error" "Import action of '$($this_action)' for $($this_name) at row $($Script:CurrentRow) is unknown"

						echo "Import action of '$($this_action)' for $($this_name) at row $($Script:CurrentRow) is unknown."

					}

				}

			}

		}

		if ($continue -eq $true)

		{

			# Validate the boolean property for Force Change Password

			if (![String]::IsNullorEmpty($user.ForceChangePassword))

			{

				if (($user.ForceChangePassword -eq "0") -or ($user.ForceChangePassword -eq "1"))

				{}

				else

				{

					$boolVal = $true

					if ([System.Boolean]::TryParse($user.ForceChangePassword, [ref] $boolVal))

					{

						if ($boolVal -eq $false)

						{

							$user.ForceChangePassword = "0"

						}

						else

						{

							$user.ForceChangePassword = "1"

						}

					}

					else

					{

						$continue = $false

						log "Error" "ForceChangePassword value of '$($user.ForceChangePassword)' for $($this_name) at row $($Script:CurrentRow) is unknown"

						echo "ForceChangePassword value of '$($user.ForceChangePassword)' for $($this_name) at row $($Script:CurrentRow) is unknown."

					}

				}

			}

		}

		if ($continue -eq $true)

		{

			$this_date = Get-Date

				

			$props = New-Object System.Collections.ArrayList

			$mailProps = New-Object System.Collections.ArrayList

			$oldValues = New-Object System.Collections.Hashtable

			$Script:HasChanges = $false

			$Script:HasRecipientChanges = $false

			$Script:hasMailChanges = $false

			# Capture the properties needed to do cmdlet's other than Update/Set/Retry

			$this_name = $user.Name

			$this_action = $user.Action

			$this_type = $user.Type

			$this_email = $user.EmailAddress

			if (![String]::IsNullorEmpty($user.Password))

			{

				$this_pwd = ConvertTo-SecureString $user.Password -AsPlainText -Force

			}

			else

			{

				$this_pwd = $user.Password

			}

						

			$this_firstName = $user.FirstName

			$this_lastName = $user.LastName

			$this_displayName = $user.DisplayName

			if ([String]::IsNullorEmpty($this_displayName))

			{

				$this_displayName = $this_email

			}

			$this_initials = $user.Initials

			

			# Capture the boolean property for Force Change Password

			# Note: The value is validated above

			$this_resetpwd = $true

			if (![String]::IsNullorEmpty($user.ForceChangePassword))

			{

				if ($user.ForceChangePassword -eq "0")

				{

					$this_resetpwd = $false

				}

			}

			

			# Build the list of Proxy Email Addresses

			$this_emailAddresses = New-Object System.Collections.ArrayList

			if (![String]::IsNullorEmpty($this_email))

			{

				$index = $this_emailAddresses.Add("SMTP:$($this_email)")

				

				if (![String]::IsNullorEmpty($user.EmailAddress2))

				{

					$index = $this_emailAddresses.Add("smtp:$($user.EmailAddress2)")

				}

				if (![String]::IsNullorEmpty($user.EmailAddress3))

				{

					$index = $this_emailAddresses.Add("smtp:$($user.EmailAddress3)")

				}

				if (![String]::IsNullorEmpty($user.EmailAddress4))

				{

					$index = $this_emailAddresses.Add("smtp:$($user.EmailAddress4)")

				}

				if (![String]::IsNullorEmpty($user.EmailAddress5))

				{

					$index = $this_emailAddresses.Add("smtp:$($user.EmailAddress5)")

				}

			}

	

			# By default, set this row as done

			$user.Action = "Done"

			# Add the static values that cannot change

			$index = $oldValues.Add("Name", $this_name)

			$index = $oldValues.Add("EmailAddress", $this_email)

			# If the user was added in this session then use the properties of the new mailbox

			# as oldvalues so it won't go into the pahse2, set-values section, to reset the same properties.

			if ($Script:AddedMbxes[$this_name])

			{

				$index = $oldValues.Add("FirstName", $this_firstName)

				$index = $oldValues.Add("LastName", $this_lastName)

				$index = $oldValues.Add("DisplayName", $this_displayName)

				$index = $oldValues.Add("Initials", $this_Initials)

				$emailAddresses = New-Object System.Collections.ArrayList

		 	if (![String]::IsNullorEmpty($this_email))

 			{

 				$index = $emailAddresses.Add("SMTP:$($this_email)")

				}

		 	$index = $oldValues.Add("EmailAddresses", $emailAddresses)

			}

			

					

			log "Importing" "Starting import for = $($this_name) at row $($Script:CurrentRow)"

			echo "Starting import for = $($this_name) at row $($Script:CurrentRow)"

			# Keep a list of all objects updated in this session to keep proper count

			if (!$Script:Names.Contains($this_name))

			{

				$index = $Script:Names.Add($this_name)

			}

			$error.Clear()

			# Validate the Action

			if (($ValidateAction -ne $false) -and ($this_action -ne "Set"))

			{

				if ($this_type -eq "Mailbox")

				{

					$this_mail = Invoke-Command -Session $Script:RS -ErrorAction SilentlyContinue -arg $this_name {param ($identity) get-mailbox -Identity $identity}

					if ([String]::IsNullorEmpty($error[0]))

					{

						$this_addrbook = Invoke-Command -Session $Script:RS -ErrorAction SilentlyContinue -arg $this_name {param ($identity) get-user -Identity $identity}

					}

				}

				elseif ($this_type -eq "MailUser")

				{

					$this_mail = Invoke-Command -Session $Script:RS -ErrorAction SilentlyContinue -arg $this_name {param ($identity) get-mailuser -Identity $identity}

					if ([String]::IsNullorEmpty($error[0]))

					{

						$this_addrbook = Invoke-Command -Session $Script:RS -ErrorAction SilentlyContinue -arg $this_name {param ($identity) get-user -Identity $identity}

					}

				}

				elseif ($this_type -eq "MailContact")

				{

					$this_mail = Invoke-Command -Session $Script:RS -ErrorAction SilentlyContinue -arg $this_name {param ($identity) get-mailcontact -Identity $identity}

					if ([String]::IsNullorEmpty($error[0]))

					{

						$this_addrbook = Invoke-Command -Session $Script:RS -ErrorAction SilentlyContinue -arg $this_name {param ($identity) get-contact -Identity $identity}

					}

				}

				if ([String]::IsNullorEmpty($error[0]))

				{

					log "Importing" "$($this_type) Exists."

					if (($this_action -eq "Add") -or ($this_action -eq "RetryAdd"))

					{

						$this_action = "Update"

					}

					

					if (($this_pwd -ne $null) -and (![String]::IsNullorEmpty($this_pwd)))

					{

						# Password Reset has been initialized

						$Script:HasChanges = $true

					}

					

					# if the user was added in Phase 1, then here in phase 3 some of the old values are already set.

					if (!$Script:AddedMbxes[$this_name])

					{

						$index = $oldValues.Add("DisplayName", $this_addrbook.DisplayName)

						$index = $oldValues.Add("FirstName", $this_addrbook.FirstName)

						$index = $oldValues.Add("LastName", $this_addrbook.LastName)

						$index = $oldValues.Add("Initials", $this_addrbook.Initials)

						$index = $oldValues.Add("EmailAddresses", $this_mail.EmailAddresses)

					}

					$index = $oldValues.Add("Company", $this_addrbook.Company)

					$index = $oldValues.Add("StreetAddress", $this_addrbook.StreetAddress)

					$index = $oldValues.Add("City", $this_addrbook.City)

					$index = $oldValues.Add("StateorProvince", $this_addrbook.StateorProvince)

					$index = $oldValues.Add("PostalCode", $this_addrbook.PostalCode)

					$index = $oldValues.Add("CountryorRegion", $this_addrbook.CountryorRegion)

					$index = $oldValues.Add("Department", $this_addrbook.Department)

					$index = $oldValues.Add("Phone", $this_addrbook.Phone)

					$index = $oldValues.Add("Fax", $this_addrbook.Fax)

					$index = $oldValues.Add("HomePhone", $this_addrbook.HomePhone)

					$index = $oldValues.Add("MobilePhone", $this_addrbook.MobilePhone)

					$index = $oldValues.Add("Notes", $this_addrbook.Notes)

					$index = $oldValues.Add("Office", $this_addrbook.Office)

					$index = $oldValues.Add("Title", $this_addrbook.Title)

					$index = $oldValues.Add("WebPage", $this_addrbook.WebPage)

					$index = $oldValues.Add("CustomAttribute1", $this_mail.CustomAttribute1)

					$index = $oldValues.Add("CustomAttribute2", $this_mail.CustomAttribute2)

					$index = $oldValues.Add("CustomAttribute3", $this_mail.CustomAttribute3)

					$index = $oldValues.Add("CustomAttribute4", $this_mail.CustomAttribute4)

					$index = $oldValues.Add("CustomAttribute5", $this_mail.CustomAttribute5)

					$index = $oldValues.Add("CustomAttribute6", $this_mail.CustomAttribute6)

					$index = $oldValues.Add("CustomAttribute7", $this_mail.CustomAttribute7)

					$index = $oldValues.Add("CustomAttribute8", $this_mail.CustomAttribute8)

					$index = $oldValues.Add("CustomAttribute9", $this_mail.CustomAttribute9)

					$index = $oldValues.Add("CustomAttribute10", $this_mail.CustomAttribute10)

					$index = $oldValues.Add("CustomAttribute11", $this_mail.CustomAttribute11)

					$index = $oldValues.Add("CustomAttribute12", $this_mail.CustomAttribute12)

					$index = $oldValues.Add("CustomAttribute13", $this_mail.CustomAttribute13)

					$index = $oldValues.Add("CustomAttribute14", $this_mail.CustomAttribute14)

					$index = $oldValues.Add("CustomAttribute15", $this_mail.CustomAttribute15)

				}

				else

				{

					log "Importing" "$($this_type) Does Not Exist"

					if ($this_action -eq "Update")

					{

						$this_action = "Add"

					}

					elseif ($this_action -eq "Delete")

					{

						$this_action = "Done"

						log "Error" "$($this_type) deletion was unsuccessful. Error= $($error[0])"

						echo "$($this_type) deletion was unsuccessful. See Log for details."

					}

					elseif ($this_action -eq "RetryDelete")

					{

						$this_action = "Done"

					}

					elseif ($this_action -eq "PasswordReset")

					{

						$this_action = "Done"

						log "Error" "Password Reset was unsuccessful. Error= $($error[0])"

						echo "Password Reset was unsuccessful. See Log for details."

					}

				}

			}

			else

			{

				$Script:HasChanges = $true

			}

			$error.Clear()

			

			if ($this_action -eq "Done")

			{

				#Don't do anything since validation failed

			}

			elseif (($this_action -eq "Add") -or ($this_action -eq "RetryAdd"))

			{

				$Script:HasChanges = $true

				logField "*Name " $this_name

				logField "*EmailAddress " $this_email

				logField "*Passw. " $this_pwd

				logField "*ForcePassChange " $this_resetpwd

				logField "*DisplayName " $this_displayName

				logField "*FirstName " $this_firstName

				logField "*LastName " $this_lastName

				logField "*Initials " $this_initials

			}

			elseif ($this_action -eq "PasswordReset")

			{

				$Script:HasChanges = $true

				logField " Name " $this_name

				logField " EmailAddress " $this_email

				logField "*Passw. " $this_pwd

			}

			elseif (($this_action -eq "Delete") -or ($this_action -eq "RetryDelete"))

			{

				$Script:HasChanges = $true

				logField " Name " $this_name

				logField " EmailAddress " $this_email

			}

			else

			{

				# The Properties are added with ordinal positions

				# During the execution of each cmdlet, the order is represented with

				# Parameters starting with $1,$2,$3,etc (Name,DisplayName,FirstName,etc)

				addProperty $props $oldValues "Name " $this_name #1

				logField " EmailAddress " $this_email

				if (($this_pwd -ne $null) -and (![String]::IsNullorEmpty($this_pwd)))

				{

					logField "*Passw. " $this_pwd

				}

				addProperty $props $oldValues "DisplayName " $user.DisplayName #2

				addProperty $props $oldValues "FirstName " $user.FirstName #3

				addProperty $props $oldValues "LastName " $user.LastName #4

				addProperty $props $oldValues "Initials " $user.Initials #5

				addProperty $props $oldValues "Company " $user.Company #6

				addProperty $props $oldValues "StreetAddress " $user.StreetAddress #7

				addProperty $props $oldValues "City " $user.City #8

				addProperty $props $oldValues "StateorProvince " $user.StateorProvince #9

				addProperty $props $oldValues "PostalCode " $user.PostalCode #10

				addProperty $props $oldValues "CountryorRegion " $user.CountryorRegion #11

				addProperty $props $oldValues "Department " $user.Department #12

				addProperty $props $oldValues "Phone " $user.Phone #13

				addProperty $props $oldValues "Fax " $user.Fax #14

				addProperty $props $oldValues "HomePhone " $user.HomePhone #15

				addProperty $props $oldValues "MobilePhone " $user.MobilePhone #16

				addProperty $props $oldValues "Notes " $user.Notes #17

				addProperty $props $oldValues "Office " $user.Office #18

				addProperty $props $oldValues "Title " $user.Title #19

				addProperty $props $oldValues "WebPage " $user.WebPage #20

				

				$index = $mailProps.Add($this_name) #1

				addProperty $mailProps $oldValues "EmailAddresses " $this_emailAddresses #2

				addProperty $mailProps $oldValues "CustomAttribute1 " $user.CustomAttribute1 #3

				addProperty $mailProps $oldValues "CustomAttribute2 " $user.CustomAttribute2 #4

				addProperty $mailProps $oldValues "CustomAttribute3 " $user.CustomAttribute3 #5

				addProperty $mailProps $oldValues "CustomAttribute4 " $user.CustomAttribute4 #6

				addProperty $mailProps $oldValues "CustomAttribute5 " $user.CustomAttribute5 #7

				addProperty $mailProps $oldValues "CustomAttribute6 " $user.CustomAttribute6 #8

				addProperty $mailProps $oldValues "CustomAttribute7 " $user.CustomAttribute7 #9

				addProperty $mailProps $oldValues "CustomAttribute8 " $user.CustomAttribute8 #10

				addProperty $mailProps $oldValues "CustomAttribute9 " $user.CustomAttribute9 #11

				addProperty $mailProps $oldValues "CustomAttribute10" $user.CustomAttribute10 #12

				addProperty $mailProps $oldValues "CustomAttribute11" $user.CustomAttribute11 #13

				addProperty $mailProps $oldValues "CustomAttribute12" $user.CustomAttribute12 #14

				addProperty $mailProps $oldValues "CustomAttribute13" $user.CustomAttribute13 #15

				addProperty $mailProps $oldValues "CustomAttribute14" $user.CustomAttribute14 #16

				addProperty $mailProps $oldValues "CustomAttribute15" $user.CustomAttribute15 #17

			}

			

			if ($Script:HasChanges -ne $true)

			{

				$this_date2 = Get-Date

			

				if ($this_action -eq "Done")

				{

					log "Importing" "Skipping action for $($this_name)"

					echo "Skipping action for $($this_name) ($($this_date2.Subtract($this_date).TotalSeconds))"

				}

				else

				{

					$this_action = "Done"

					log "Importing" "No Changes are required for $($this_name), skipping update"

					echo "No Changes are required for $($this_name), skipping update ($($this_date2.Subtract($this_date).TotalSeconds))"

				}

			}

			$error.Clear()

			if ($this_action -ne "Done")

			{

				$this_date2 = Get-Date

				log "Importing" "Performing $($this_action) for = $($this_name)"

				echo "Performing $($this_action) for = $($this_name) ($($this_date2.Subtract($this_date).TotalSeconds))"

				# Check action type

				if (($this_action -eq "Add") -or ($this_action -eq "RetryAdd"))

				{

									

					if ($this_type -eq "Mailbox")

					{

						# create mailbox - assigning result to variable to avoid listing the new object

						

						if (![String]::IsNullorEmpty($user.MailboxPlan))

						{

							$this_mailboxPlan = $user.MailboxPlan

							%{Invoke-Command -Session $Script:RS {param ($name,$pwd,$email,$resetpwd,$mailboxPlan,$firstName,$lastName,$displayName,$initials) new-mailbox -Name $name -Password $pwd -WindowsLiveID $email -ResetPasswordOnNextLogon $resetpwd -MailboxPlan $mailboxPlan -FirstName $firstName -LastName $lastName -DisplayName $displayName -Initials $initials}-arg $this_name,$this_pwd,$this_email,$this_resetpwd,$this_mailboxPlan,$this_firstName,$this_lastName,$this_displayName,$this_initials} > $results

						}

						else

						{

 							%{Invoke-Command -Session $Script:RS {param ($name,$pwd,$email,$resetpwd,$firstName,$lastName,$displayName,$initials) new-mailbox -Name $name -Password $pwd -WindowsLiveID $email -ResetPasswordOnNextLogon $resetpwd -FirstName $firstName -LastName $lastName -DisplayName $displayName -Initials $initials}-arg $this_name,$this_pwd,$this_email,$this_resetpwd,$this_firstName,$this_lastName,$this_displayName,$this_initials} > $results

						}

						if ([String]::IsNullorEmpty($error[0]))

						{

							# if everything went fine, we update the data in the next iteration

							$user.Action = "Set"

							# Mark this mailbox as a new add, that way,

							# Phase2 set-mailbox won't try to re-set the attributes.

							if (!$Script:AddedMbxes[$this_name])

							{

								$Script:AddedMbxes.Add($this_name,$true)

							}

						}

						else

						{

							# If this is the first time we try this operation, let's retry it later

							if ($this_action -ne "RetryAdd")

							{

								log "Importing" "Mailbox creation was unsuccessful and it will be retried later."

								CheckRSState

								$user.Action = "RetryAdd"

								$Script:RetryPass = $true

							}

							else

							{

								log "Error" "Mailbox creation was unsuccessful. Error= $($error[0])"

								echo "Mailbox creation was unsuccessful. See Log for details."

							}

						}

					}

					elseif ($this_type -eq "MailUser")

					{

						# create mail user - assigning result to variable to avoid listing the new object						

 %{Invoke-Command -Session $Script:RS {param ($name,$pwd,$email,$firstName,$lastName,$displayName) new-mailuser -Name $name -Password $pwd -WindowsLiveID $email -ExternalEmailAddress $email -FirstName $firstName -LastName $lastName -DisplayName $displayName}-arg $this_name,$this_pwd,$this_email,$this_firstName,$this_lastName,$this_displayName} > $results						

 #%{Invoke-Command -Session $Script:RS {param ($name,$email,$firstName,$lastName,$displayName) new-mailuser -Name $name -ExternalEmailAddress $email -FirstName $firstName -LastName $lastName -DisplayName $displayName}-arg $this_name,$this_email,$this_firstName,$this_lastName,$this_displayName} > $results

						if ([String]::IsNullorEmpty($error[0]))

						{

							# if everything went fine, we update the data in the next iteration

							$user.Action = "Set"

						}

						else

						{

							# If this is the first time we try this operation, let's retry it later

							if ($this_action -ne "RetryAdd")

							{

								log "Importing" "Mail User creation was unsuccessful and it will be retried later."

								CheckRSState

								$user.Action = "RetryAdd"

								$Script:RetryPass = $true

							}

							else

							{

								log "Error" "Mail User creation was unsuccessful. Error= $($error[0])"

								echo "Mail User creation was unsuccessful. See Log for details."

							}

						}

					}

					elseif ($this_type -eq "MailContact")

					{

						# create mail contact - assigning result to variable to avoid listing the new object

						%{Invoke-Command -Session $Script:RS {param ($name,$email,$firstName,$lastName,$displayName) new-mailcontact -Name $name -ExternalEmailAddress $email -FirstName $firstName -LastName $lastName -DisplayName $displayName}-arg $this_name,$this_email,$this_firstName,$this_lastName,$this_displayName} > $results

						if ([String]::IsNullorEmpty($error[0]))

						{

							# if everything went fine, we update the data in the next iteration

							$user.Action = "Set"

						}

						else

						{

							# If this is the first time we try this operation, let's retry it later

							if ($this_action -ne "RetryAdd")

							{

								log "Importing" "Mail Contact creation was unsuccessful and it will be retried later."

								CheckRSState

								$user.Action = "RetryAdd"

								$Script:RetryPass = $true

							}

							else

							{

								log "Error" "Mail Contact creation was unsuccessful. Error= $($error[0])"

								echo "Mail Contact creation was unsuccessful. See Log for details."

							}

						}

					}

					else

					{

						log "Error" "Can not create user: $this_name. Recipient Type: $($this_type)"

						echo "Can not create user: $this_name. Recipient Type: $($this_type)."

					}

				}

				

				

				elseif ($this_action -eq "PasswordReset")

				{

					echo "Performing password reset for $this_name. You may ignore the following warning."

					$error.Clear()

					%{Invoke-Command -Session $Script:RS -ErrorAction $WarningPreference {param ($name,$pwd) set-mailbox -Identity $name -Password $pwd} -arg $this_name,$this_pwd} > $results

					if (![String]::IsNullorEmpty($error[0]))

					{

						log "Error" "Password Reset was unsuccessful. Error= $($error[0])"

						echo "Password Reset was unsuccessful. See Log for details."

					}

				}

								

				

				elseif (($this_action -eq "Update") -or ($this_action -eq "Set") -or ($this_action -eq "RetryUpdate"))

				{

					if ($this_type -eq "Mailbox")

					{

						# update mailbox with Mailbox Data

						if (([String]::IsNullorEmpty($error[0])) -and ($Script:hasMailChanges -eq $true))

						{

							$error.Clear()

							Invoke-Command -Session $Script:RS -arg $mailProps -ErrorAction $WarningPreference {param ($1,$2,$3,$4,$5,$6,$7,$8,$9,$10,$11,$12,$13,$14,$15,$16,$17) set-mailbox -Identity $1 -EmailAddresses $2 -CustomAttribute1 $3 -CustomAttribute2 $4 -CustomAttribute3 $5 -CustomAttribute4 $6 -CustomAttribute5 $7 -CustomAttribute6 $8 -CustomAttribute7 $9 -CustomAttribute8 $10 -CustomAttribute9 $11 -CustomAttribute10 $12 -CustomAttribute11 $13 -CustomAttribute12 $14 -CustomAttribute13 $15 -CustomAttribute14 $16 -CustomAttribute15 $17}

						}

						

						# update mailbox with User Data

						if (([String]::IsNullorEmpty($error[0])) -and ($Script:HasRecipientChanges -eq $true))

						{

							$error.Clear()

							Invoke-Command -Session $Script:RS -arg $props -ErrorAction $WarningPreference {param ($1,$2,$3,$4,$5,$6,$7,$8,$9,$10,$11,$12,$13,$14,$15,$16,$17,$18,$19,$20) set-user -Identity $1 -DisplayName $2 -FirstName $3 -LastName $4 -Initials $5 -Company $6 -StreetAddress $7 -City $8 -StateorProvince $9 -PostalCode $10 -CountryorRegion $11 -Department $12 -Phone $13 -Fax $14 -HomePhone $15 -MobilePhone $16 -Notes $17 -Office $18 -Title $19 -WebPage $20}

						}

						

						# Perform a password reset if the Password is specified

						if (([String]::IsNullorEmpty($error[0])) -and ($this_action -eq "Update") -and (![String]::IsNullorEmpty($this_pwd)))

						{

							log "Importing" "Performing password reset for $this_name."

							echo "Performing password reset for $this_name. You may ignore the following warning."

							$error.Clear()

							Invoke-Command -Session $Script:RS -ErrorAction $WarningPreference {param ($name,$pwd,$resetpwd) set-mailbox -Identity $name -Password $pwd -ResetPasswordOnNextLogon $resetpwd} -arg $this_name,$this_pwd,$this_resetpwd

						}

					

						if (![String]::IsNullorEmpty($error[0]))

						{

							# If this is the first time we try this operation, let's retry it later

							if ($this_action -ne "RetryUpdate")

							{

								log "Importing" "Mailbox update was unsuccessful and it will be retried later."

								CheckRSState

								$user.Action = "RetryUpdate"

								$Script:RetryPass = $true

							}

							else

							{

								log "Error" "Mailbox update was unsuccessful. Error= $($error[0])"

								echo "Mailbox update was unsuccessful. See Log for details."

							}

						}

					}

					elseif ($this_type -eq "MailUser")

					{

						# update mail user with MailUser Data

						if (([String]::IsNullorEmpty($error[0])) -and ($Script:hasMailChanges -eq $true))

						{

							$error.Clear()

							Invoke-Command -Session $Script:RS -arg $mailProps -ErrorAction $WarningPreference {param ($1,$2,$3,$4,$5,$6,$7,$8,$9,$10,$11,$12,$13,$14,$15,$16,$17) set-mailuser -Identity $1 -EmailAddresses $2 -CustomAttribute1 $3 -CustomAttribute2 $4 -CustomAttribute3 $5 -CustomAttribute4 $6 -CustomAttribute5 $7 -CustomAttribute6 $8 -CustomAttribute7 $9 -CustomAttribute8 $10 -CustomAttribute9 $11 -CustomAttribute10 $12 -CustomAttribute11 $13 -CustomAttribute12 $14 -CustomAttribute13 $15 -CustomAttribute14 $16 -CustomAttribute15 $17}

						}

						

						# update mail user with User Data

						if (([String]::IsNullorEmpty($error[0])) -and ($Script:HasRecipientChanges -eq $true))

						{

							$error.Clear()

							Invoke-Command -Session $Script:RS -arg $props -ErrorAction $WarningPreference {param ($1,$2,$3,$4,$5,$6,$7,$8,$9,$10,$11,$12,$13,$14,$15,$16,$17,$18,$19,$20) set-user -Identity $1 -DisplayName $2 -FirstName $3 -LastName $4 -Initials $5 -Company $6 -StreetAddress $7 -City $8 -StateorProvince $9 -PostalCode $10 -CountryorRegion $11 -Department $12 -Phone $13 -Fax $14 -HomePhone $15 -MobilePhone $16 -Notes $17 -Office $18 -Title $19 -WebPage $20}

						}

					

						if (![String]::IsNullorEmpty($error[0]))

						{

							# If this is the first time we try this operation, let's retry it later

							if ($this_action -ne "RetryUpdate")

							{

								log "Importing" "Mail User update was unsuccessful and it will be retried later."

								CheckRSState

								$user.Action = "RetryUpdate"

								$Script:RetryPass = $true

							}

							else

							{

								log "Error" "Mail User update was unsuccessful. Error= $($error[0])"

								echo "Mail User update was unsuccessful. See Log for details."

							}

						}

					}

					elseif ($this_type -eq "MailContact")

					{

						# update mail contact with MailContact Data

						if (([String]::IsNullorEmpty($error[0])) -and ($Script:hasMailChanges -eq $true))

						{

							$error.Clear()

							Invoke-Command -Session $Script:RS -arg $mailProps -ErrorAction $WarningPreference {param ($1,$2,$3,$4,$5,$6,$7,$8,$9,$10,$11,$12,$13,$14,$15,$16,$17) set-mailcontact -Identity $1 -EmailAddresses $2 -CustomAttribute1 $3 -CustomAttribute2 $4 -CustomAttribute3 $5 -CustomAttribute4 $6 -CustomAttribute5 $7 -CustomAttribute6 $8 -CustomAttribute7 $9 -CustomAttribute8 $10 -CustomAttribute9 $11 -CustomAttribute10 $12 -CustomAttribute11 $13 -CustomAttribute12 $14 -CustomAttribute13 $15 -CustomAttribute14 $16 -CustomAttribute15 $17}

						}

						

						# update mail contact with Contact Data

						if (([String]::IsNullorEmpty($error[0])) -and ($Script:HasRecipientChanges -eq $true))

						{

							$error.Clear()

							Invoke-Command -Session $Script:RS -arg $props -ErrorAction $WarningPreference {param ($1,$2,$3,$4,$5,$6,$7,$8,$9,$10,$11,$12,$13,$14,$15,$16,$17,$18,$19,$20) set-contact -Identity $1 -DisplayName $2 -FirstName $3 -LastName $4 -Initials $5 -Company $6 -StreetAddress $7 -City $8 -StateorProvince $9 -PostalCode $10 -CountryorRegion $11 -Department $12 -Phone $13 -Fax $14 -HomePhone $15 -MobilePhone $16 -Notes $17 -Office $18 -Title $19 -WebPage $20}

						}

						

						if (![String]::IsNullorEmpty($error[0]))

						{

							# If this is the first time we try this operation, let's retry it later

							if ($this_action -ne "RetryUpdate")

							{

								log "Importing" "Mail Contact update was unsuccessful and it will be retried later."

								CheckRSState

								$user.Action = "RetryUpdate"

								$Script:RetryPass = $true

							}

							else

							{

								log "Error" "Mail Contact update was unsuccessful. Error= $($error[0])"

								echo "Mail Contact update was unsuccessful. See Log for details."

							}

						}

					}

					else

					{

						log "Error" "Can not update user: $($this_name). Recipient Type: $($this_type)"

						echo "Can not update user: $($this_name). Recipient Type: $($this_type)"

					}

				}

				

				

				elseif (($this_action -eq "Delete") -or ($this_action -eq "RetryDelete"))

				{

					if ($this_type -eq "Mailbox")

					{

						# delete mailbox

						if ($script:isR3)

						{

							if ($user.KeepWindowsLiveID -ieq "Y")

							{

								# If the user decides to keep the Live ID, we call remove-mailbox without any switch

								%{Invoke-Command -Session $Script:RS {param ($this_name) remove-mailbox -Identity $this_name -Confirm:$false}-arg $this_name}

							}

							else

							{

								# If the user decides to delete the Live ID along with mailbox, we call Remove-Mailbox with DisableWindowsLiveId

								%{Invoke-Command -Session $Script:RS {param ($this_name) remove-mailbox -Identity $this_name -DisableWindowsLiveID -Confirm:$false}-arg $this_name}

							}

						}

						else

						{	

							if ($user.KeepWindowsLiveID -ieq "Y")

							{

								# If the user decides to keep the Live ID, we call remove-mailbox with -KeepWindowsLiveID

								%{Invoke-Command -Session $Script:RS {param ($this_name) remove-mailbox -Identity $this_name -KeepWindowsLiveID -Confirm:$false}-arg $this_name}

							}

							else

							{

								# If the user decides to delete the Live ID along with mailbox, we call Remove-Mailbox without any switch

								%{Invoke-Command -Session $Script:RS {param ($this_name) remove-mailbox -Identity $this_name -Confirm:$false}-arg $this_name}

							}

						}

						if (![String]::IsNullorEmpty($error[0]))

						{

							# If this is the first time we try this operation, let's retry it later

							if ($this_action -ne "RetryDelete")

							{

								log "Importing" "Mailbox deletion was unsuccessful and it will be retried later."

								CheckRSState

								$user.Action = "RetryDelete"

								$Script:RetryPass = $true

							}

							else

							{

								log "Error" "Mailbox deletion was unsuccessful. Error= $($error[0])"

								echo "Mailbox deletion was unsuccessful. See Log for details."

							}

						}

					}

					elseif ($this_type -eq "MailUser")

					{

						# delete mail user

						%{Invoke-Command -Session $Script:RS {param ($this_name,$this_Phone) remove-mailuser -Identity $this_name -Confirm:$false}-arg $this_name}

						if (![String]::IsNullorEmpty($error[0]))

						{

							# If this is the first time we try this operation, let's retry it later

							if ($this_action -ne "RetryDelete")

							{

								log "Importing" "Mail User deletion was unsuccessful and it will be retried later."

								CheckRSState

								$user.Action = "RetryDelete"

								$Script:RetryPass = $true

							}

							else

							{

								log "Error" "Mail User deletion was unsuccessful. Error= $($error[0])"

								echo "Mail User deletion was unsuccessful. See Log for details."

							}

						}

					}

					elseif ($this_type -eq "MailContact")

					{

						# delete mail contact

						%{Invoke-Command -Session $Script:RS {param ($this_name,$this_Phone) remove-mailcontact -Identity $this_name -Confirm:$false}-arg $this_name}

						if (![String]::IsNullorEmpty($error[0]))

						{

							# If this is the first time we try this operation, let's retry it later

							if ($this_action -ne "RetryDelete")

							{

								log "Importing" "Mail Contact deletion was unsuccessful and it will be retried later."

								CheckRSState

								$user.Action = "RetryDelete"

								$Script:RetryPass = $true

							}

							else

							{

								log "Error" "Mail Contact deletion was unsuccessful. Error= $($error[0])"

								echo "Mail Contact deletion was unsuccessful. See Log for details."

							}

						}

					}

					else

					{

						log "Error" "Cannot import user: $this_name. Recipient Type: $($this_type)"

						echo "Cannot import user: $this_name. Recipient Type: $($this_type)"

					}

				}

				$this_date2 = Get-Date

				echo "Finished $($this_action) for = $($this_name) ($($this_date2.Subtract($this_date).TotalSeconds))"

			}

		}

	}

}

Function Declarations End

Main Script Block

#Error information

#error code = <terminating error message>,<troubleshooting url>,(<retry message>,<retry timout>|<custom retry script block>)

$connectionErrors = @{

	-2144108123 = "PowerShell quota exceeded. Wait 15 minutes and try again.",

				 "http://go.microsoft.com/fwlink/?LinkID=147836",

				 "PowerShell quota exceeded. Error code -2144108123. Waiting 16 mins for an inactive runspace to expire.",

				 960;

	995 = "No network connection. Please check the the URL and try again ($($RemoteURL)).",

				 "http://go.microsoft.com/fwlink/?LinkID=147837",

				 $function:retryConnectionIssues;

	5 = "Accessed Denied from remote service. Error code: 5. Please check credentials (Username:$($LiveCredential.username)) and URL ($($RemoteURL)).",

				 "http://go.microsoft.com/fwlink/?LinkID=147838",

				 "Remote PowerShell service reporting access denied. Error code: 5. Retrying in 30 secs.",

				 30;

	"default" = "Too many broken runspaces.",

				 "http://go.microsoft.com/fwlink/?LinkID=147839",

				 "Runspace Creation was unsuccessful. Error = {0}.",

				 0;

}

log "Initializing" ""

log "Initializing" "Starting Import: $($this_date)"

log "Pre-Validation" "Users File = $($UsersFile)"

log "Pre-Validation" "Remote URL = $($RemoteURL)"

log "Pre-Validation" "Live Creds = $($LiveCredential)"

log "Pre-Validation" "Validate Action = $($ValidateAction)"

log "Pre-Validation" "Start Row = $($StartRow)"

log "Pre-Validation" "End Row = $($EndRow)"

log "Pre-Validation" "LogVerbose = $($LogVerbose)"

$start_date = Get-Date

if ($StartRow -ne 1)

{

	echo "Starting on row $($StartRow)"

}

if ($EndRow -ne 1000000)

{

	echo "Ending on row $($EndRow)"

}

Tries to create Runspace

$error.Clear()

openRS

if (![String]::IsNullorEmpty($error[0]))

{

 logExit "Pre-validation" "Runspace creation was unsuccessful. Step: check creds and URL. Error= $($error[0])"

}

else

{

 log "Pre-Validation" "Successfully created Runspace for = $($RemoteURL)"

}

check for updates

checkVersionStatus

read recipients to be created

$error.Clear()

$UserFile = import-csv -Path $UsersFile -OutVariable string -ErrorAction $WarningPreference

if (![String]::IsNullorEmpty($error[0]))

{

 logExit "Pre-validation" "CSV Import was unsuccessful. Step: Opening User list file. Error= $($error[0])"

}

log "Importing" "Starting CSV Import"

echo "Starting CSV Import"

Process file the first time to execute all the create/delete operations

echo "Phase 1: Add/Update/Delete operations"

log "Importing" "Phase 1: Add/Update/Delete operations"

processFile $UserFile

Process file a second time to execute all set/update operations

echo "Phase 2: Set operations"

log "Updating" "Phase 2: Set operations"

processFile $UserFile

Finally, process file a third time to retry failures

if ($Script:RetryPass)

{

	# let's give the topology some time to replicate the objects before retrying

	echo "Waiting 30 seconds to allow replication"

	echo "Phase 3: Retry operations"

	log "Retry" "Phase 3: Retry operations"

	[System.Threading.Thread]::Sleep(30000)

	$WarningPreference = "Continue"

	processFile $UserFile

}

$end_date = Get-Date

$timeSpan = $end_date.Subtract($start_date)

$elapsed = [String]::Format("{0} Hours {1} Minutes {2} Seconds", $timeSpan.Hours.ToString(), $timeSpan.Minutes.ToString(), $timeSpan.Seconds.ToString())

$ProcessCount = $Script:Names.Count

#remind about update if needed

showUpdateMessage

log "Terminating" "Processed $($ProcessCount) objects in $($elapsed)."

logExit "Terminating" "Finished CSV_Parser.PS1 Script. Please check $($file_name) for details."

Main Script End

image9.png

e

, /%V

image10.png

oy
ey

// \/(\\

T

K/ co A

w\
(}‘J

[image:]

[bookmark: _Toc323117642]Getting Started: IT Academy Program

IT Director Checklist

[bookmark: _Toc323117644]Objectives – By following the IT Director steps, you will be able to successfully implement the IT Academy Program at your institution:

See IT Director Information document for full details on each of the steps below and more.

		Microsoft IT Academy Readiness Checklist

		Links

		Date Completed

		Hardware

		Scan lab computers for E-Learning compatibility (some of the information at this link needs to be updated, please disregard)

		http://itacademy.microsoftelearning.com/help/systemRequirements.aspx

		

		Software

		See IT Director Information document for details on obtaining your software licenses If running XP, recommend upgrading to Windows 7 for Office 2010.

		

		

		Plug-ins

		Install Silverlight

		http://www.silverlight.net/downloads

		

		

		Install ActiveX Control to ensure students can start the virtual labs within the ELearning

		https://lva.msllab.microsoft.com/UnifiedLabViewer/checkpages/en-US/installVmrc_en-US.htm

		

		Check for

		Internet Readiness 56K

		

		

		

		Accept Browser Cookies

		

		

		

		Enable Javascript

		

		

		

		Set Browser to refresh at each page

		

		

		

		Disable a firewall that blocks cookies or blocks access to a secure server

		

		

		Add to Trusted Sites / Open ports

		microsoft.com

		

		

		

		microsoftlearning.com

		

		

		live.com (https://login.live.com for signing into ITA sites with a Live ID)

		

		

		

		profile.microsoft.com

		

		

		

		Microsoftelearning.com

		

		

		

		Ports 80 and 443

		

		

		Add to safe/bypass list on your proxy server or firewall

		65.55.12.245 Profile.microsoft.com

74.43.216.128 E-Learning Instructor site

74.43.216.125 E-Learning student site

http://profile.microsoft.com [https]

http://login.live.com [https]

		

		

		Add to Safe Senders List

		@microsoft.com

		

		

		

		@training.com

		

		

		

		@windowslivemail.com (65.55.238.140 - 65.55.238.142)

		

		

		

		@partners.extranet.microsoft.com

(10.251.56.169)

		

		

		

		@redmond.corp.microsoft.com

(157.54.86.9)

(169.254.1.11)

		

		

		Open required outbound ACL’s to TCP ports 80/443 for the following IP ranges*(Windows Live Id Services)

Schools that do not have any outbound Access restrictions to the WLID services today will not need to make any changes.

*Does not apply to schools with Federated solution.

				New Networks

157.55.134.0/24

Current Networks

65.54.165.128/27

65.54.165.160/27

65.54.186.0/27

65.54.186.32/27

65.54.186.64/27

65.54.186.96/27

65.54.186.128/27

65.54.186.160/27

65.54.186.192/27

65.54.186.224/27

65.54.234.0/26

65.54.234.64/26

65.54.240.64/27

65.54.254.96/28

65.54.254.128/28

65.54.248.192/27

65.54.248.224/27

65.54.194.192/27

65.54.204.0/27

65.54.205.0/27

65.54.208.224/27

65.54.212.192/27

65.54.213.160/27

65.54.133.128/27

65.54.142.224/27

65.54.143.96/27

65.54.145.192/27

65.54.204.192/26

65.54.206.128/26

65.54.215.192/27

65.54.205.48/28

65.54.133.48/28

65.54.208.128/26

65.54.216.160/27

65.54.217.160/27

64.4.12.0/25

65.54.143.128/25

		

		

		

		If 3 or more students create Live IDs at the same time from the same external IP address, access will be blocked for that IP address. Note, there is a pre-emptive mitigation for this by registering the school IP range in advance (IP Whitelisting)

Whitelist request will be submitted via the online form at https://support.live.com/default.aspx?productkey=wlidipexc

You can go to http://whatismyip.com to see your external IP address.

		

		Student Email Provider

		Switch settings to “Higher Education” or work with email provider to let Windows Live ID verification emails through.

		

		

		LIVE ID Solution

		Identify Live ID identity creation process you will use and follow processes outlined in IT Director Guide. See Live ID Options Matrix below for pros and cons of each available option.

		

		

		Option

		Pros

		Cons

		IT Time Requirement

		IT Complexity

		Federation

Federation ensures customers maintain control over identity management while still providing single sign-on authentication to key IT Academy resources. Specifically, federation is provided by the IT Academy program and Microsoft giving customers an alternative means of authenticating e-Learning users.

		· Uses schools existing identity management platform

· Schools retain complete control of identity management

		· Requires significant IT resources to setup and deploy

· Requires significant lead time to setup before IT Academy benefits are rolled out

		High

		High

		Live@edu

Live@edu offers educational institutions free hosted, co-branded communication and collaboration services for students, faculty, and alumni. With 10 gigabytes (GB) of e-mail storage, it’s the no-cost Outlook Live e-mail service built on Exchange 2010.

		· Uses existing school e-mail address and/or domain

· Host of administrative tools for easy administration and rights management

· Provides an easy migration path to Office365

		· For some schools, full access to the cloud offerings including storage and e-mail is considered a risk.

· Requires significant IT resources to setup and deploy

· Requires significant lead time to have setup before IT Academy benefits are rolled out

		High

		High

		Live@edu – No e-mail

With this option customers have a Live@edu domain and management without e-mail

		· Simple registration and setup process if no e-mail domain

· Provides an easy migration path to Office365

		For schools where full access to the cloud offerings, including storage and e-mail, is considered a risk. While e-mail is not available, access to SkyDrive and Office Web Apps remains.

Students will see a “Verify Email Address” screen each time they sign into the student e-learning portal.

		Med

		Med

		Option

		Pros

		Cons

		IT Time Requirement

		IT Complexity

		Live ID Creator
Live ID Creator is a tool for teachers or administrators to generate Live IDs for an entire school or individual classes for student use.

https://itasignon.microsoft.com/MemberAuthorizationPage.aspx

		· Tool creates multiple Live IDs for a class

· Can upload a CSV file for bulk Live ID creation

· Cripples e-mail functionality (no receive)

		· Students must still use their personal e-mail address for e-Learning

· While e-mail is not available, access to SkyDrive and Office web apps remains. Students will see a “Verify Email Address” screen each time they sign into the student e-learning portal.

		Low

		Low

		Manual Live ID Creation

If a school does not want to assign Live IDs via Live@EDU or through the Live ID Creator, it is possible for each instructor and student to create their own Live ID for accessing the ITA Instructor and Student E-Learning Portals. Individuals create their own Live ID at http://passport.net.

		· Each student takes responsibility for own e-mail address (no corporate resourcing or management needed)

· Can be done in class just before access to e-Learning is required

		If 3 or more students create Live IDs at the same time from the same external IP address, access will be blocked for that IP address. Note, there is a pre-emptive mitigation for this by registering the school IP range in advance (IP Whitelisting)

Whitelist request will be submitted via the online form at https://support.live.com/default.aspx?productkey=wlidipexc

You can go to http://whatismyip.com to see your external IP address.

		Low

		Low

Contact Us / Ask Questions

If you have questions on how to use the ITA tools or cannot find what you need to successfully use the IT Academy benefits, please contact us. Call or email for technical support or guidance with E-Learning or IT Academy specific benefits.

Hours: 6:30am - 5:30pm PST

Phone: 800-508-8454 for immediate help

Email: acadsupp@microsoft.com expect 24-48 hour response time

Note: when calling IT Academy Customer Support, we will need to validate your identity. You will be asked to answer three of the following questions regarding your school:

· ITA member ID number		

· ITA School Name			

· School Address

· School Phone Number

· Program Administrator’s Name

· Program Administrator’s email address

[image:]© Microsoft Corporation. All rights reserved.

image1.png

e

, /%V

image2.png

oy
ey

// \/(\\

T

K/ co A

w\
(}‘J

