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Overview 

 

In this document we describe and implement an approach that can be used to 

adjust a teacher’s mean student growth percentile (“meanGP”) for differences in 

classroom context.  The impetus for this adjustment is the notion that just as a student 

growth percentile is used to compare the achievement of students to peers with similar 

prior year test score performance, it may be sensible to compare the aggregate growth of 

a teacher’s students to that of teacher peers facing similar classroom contexts.  More 

specifically, by “classroom contexts” we mean factors such as the proportion of students 

in a classroom from low income households, the proportion of students who receive 

special education services, the proportion of students who are English Language Learners, 

and the average academic proficiency of students as demonstrated in previous years of 

schooling.  The computation of student growth percentiles from the Georgia Growth 

Model does not attempt to directly disentangle the influence of these differences in 

classroom contexts (although it may accomplish this indirectly by controlling for prior 

student achievement).  To the extent that student achievement is directly influenced by 

classroom composition (i.e., peer effects), this may advantage certain teachers over others 

if they are more likely to be placed in classrooms that are “easier to teach.”  One 

symptom that suggests this may be occurring is the finding that the correlations between 

meanGPs and classroom context variables are moderate to strong (i.e., between 0.3 and 

0.6 in absolute value). 

The approach we introduce here adjusts meanGPs on the basis of a second stage 

regression that occurs after student growth percentiles have been computed and 

aggregated to the teacher level.  Doing this results in adjusted meanGPs that will be 

uncorrelated with classroom context variables (those included in the second stage 

regression) by construction.  Note that this approach does not necessarily eliminate bias 

in a teacher’s meanGP estimate if other confounding variables have not been included in 

the model (either because they were unavailable or not thought to be important).  

Furthermore, the approach could actually fail to reduce bias, and even increase it, to the 

extent that some teachers are in fact more effective when paired with certain kinds of 

students.  The more that this is the case, the more that the adjustment presented here will 
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“overadjust” by essentially removing variability in meanGPs that should have been 

attributed to differences in teaching quality (c.f., Ballou, Sanders & Wright, 2004). 

The rest of this paper is structured as follows.  In the next section, we formally 

introduce the regression approach used to adjust a teacher’s meanGP for differences in 

classroom context.  In the sections that follow we apply the approach to a subset of 

Georgia teachers with student outcomes in at least one of two tested subjects, math and 

reading.  We compare the practical impact of the adjustment in two ways.  First, we 

examine the correlation across teachers of meanGPs and adjusted meanGPs.  Second, we 

compare the classifications of teachers into four performance categories on the basis of 

meanGPs and adjusted meanGPs.  We find that the ordering of teachers using either 

approach is largely the same, with correlations ranging between 0.92 and 0.97.  The vast 

majority of teachers are also given the same classification under either approach: 92% 

and 88% retain the same classification in elementary school grades in reading and math, 

and about 94% and 89% retain the same classification in middle school grades in reading 

and math.  Among the teachers that do shift classification categories, the shift is never 

more than one category.  However, for those teachers who do shift categories, it is the 

teachers with the more challenging students to teach that shift up, and the teachers with 

the less challenging students to teach that shift down. We conclude with a brief 

discussion of the pros and cons of the adjusted meanGP approach. 

 

The MeanGP Adjustment 

 

In the overview above, the adjustment to meanGPs was described as a second 

stage regression.  Importantly, there is much that needs to be assumed about the first 

stage before a second stage adjustment is sensible.  To begin with, it must be assumed 

that student growth percentiles (SGPs) have been properly estimated for each student 

with a subject-specific test score in the target year and a valid test score in at least the 

prior year.  Following this, a critical step is to compute a meanGP for each teacher.  In 

doing so one must assume that students have been properly linked to their teacher of 

record for each grade/course and test subject.  The nature of this link can be especially 

challenging when students receive instruction from multiple teachers. For students linked 
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to more than one teacher in a given grade/year, one can either choose to count the same 

student multiple time in computing each teacher’s meanGP, or one can assign weights to 

each student’s SGP.  Note that in either case, when teachers share students, this creates a 

dependence between the meanGPs of teachers in the same school that violates a central 

assumption of the linear regression model we specify below.  In the demonstration that 

follows we do not make adjustments for this and other possible forms of clustering.  This 

should not have an impact on the point estimates that are the basis for the adjustments we 

make to meanGPs, but it will bias the standard errors we report in the underlying teacher-

level regressions downward.   

Let the variable Yij  represent a meanGP computed for teacher i in test subject j.  

We then specify the following regression model
1
: 

 

Yij = ¢b Xij + eij          (1) 

 

where Xij  contains a set of contextual variables computed as a function of the students to 

which the teacher has been linked (e.g., percentage of students eligible for free and 

reduced lunch services), and the last term e ij  is an error term that is assumed to be 

independent of the included covariates and independent across teachers.
2
  After 

estimating the regression coefficients above, we then compute for each teacher  

 

eij =Yij -
ˆ ¢b Xij .          (2) 

 

In the equation above eij  is a residual meanGP: the difference between the meanGP we 

observe for a given teacher in a given test subject (Yij ) and the meanGP predicted for a 

                                                        
1 When a teacher only has a single class of students, then teacher-level variables are the same thing as 

classroom-level variables.  When a teacher has multiple classes, then a teacher-level and classroom level 

version of the same variable can diverge.  A more complicated approach would be include a classroom 

subscript in the model.  
2 As noted above, this assumption is surely violated by the clustering of teachers within schools and school 

districts.  
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teacher with the specific set of classroom context variables in the vector Xij .  An 

“adjusted” meanGP can be computed for each teacher as 

 

adjMGPij =Y. j + eij ,          (3) 

 

where eij  is defined as in equation 2 and Y. j
 is a constant: the average for all teachers 

with a meanGP in test subject j.  For teachers with an observed meanGP that is higher 

than that of teacher peers assigned to similar collections of students, adjMGP will be a 

percentile that is greater than average; for teachers with an observed mean GP that is 

lower than that of similar peers, adjMGP will be percentile that is lower than average.  In 

the analyses that follow we use residual meanGPs ( eij ) instead of adjusted meanGPs 

(adjMGPij) to make the contrast of the two approaches easier to interpret numerically and 

visually (i.e., scatterplots between meanGPs and adjMGPs would be identical to those of 

meanGPs and residual meanGPs, only the metric differs). 

 

Applying the Approach to Georgia Data 

 

Analytic Sample and Variables 

 

 To illustrate the adjusted meanGP approach, we use 2012-13 test score data and 

restrict our focus to teachers in schools with grades 4 and 5 (“elementary school grades”) 

and teachers in schools with grades 6, 7 and 8 (“middle school grades”).  We also restrict 

our focus to test outcomes in mathematics and reading for these grades.  After imposing a 

restriction that each teacher has at least 15 students with valid subject-specific SGPs in 

2012-13, the number of teachers and students by grade levels and test subject are 

summarized in Table 1.  These students and teachers come from a total of 1,223 unique 

elementary schools and 478 unique middle schools.   
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TABLE 1.  Student and Teacher Sample Included in Analysis 

Level Subject # Students # Teachers 

Elementary Math 242,436 7,504 

 Reading 271,348 8,479 

Middle Math 373,671 4,632 

 Reading 410,101 5,574 

 

We specify the following second stage regression for each grade level by subject 

combination: 

 

Yij = b0 + b1FRL%+ b2ELL%+ b3SWD%+ b4ACHIEVE +eij .   (4) 

 

As before, Yij represents a teacher’s subject-specific MeanGP, FRL% indicates the 

percentage of students associated with a teacher who are eligible for free or reduced price 

lunch services, ELL% indicates the percentage of students that are English language 

learners, SWD% indicates the percentage of students with disabilities (students receiving 

special education services), and ACHIEVE represents students’ mean prior grade 

achievement (computed after first standardizing test scores within grade and subject to 

have a mean of 0 and a standard deviation of 1).  We then compute eij =Yij - Ŷij  and 

compare the ordering and classifications of teachers on the basis of Yij  (i.e., the observed 

meanGP) and eij  (i.e., the residual meanGP).    
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TABLE 2.  Descriptive Statistics for Teacher-Level Variables by Grade Level and Test 

Subject 

  Elementary School 

  Reading Math 

  Mean SD Mean SD 

MeanGP 49.72 8.67 50.67 13.15 

SWD% 8.26 10.05 7.59 8.63 

FRL% 60.33 28.43 60.34 28.78 

ELL% 7.84 14.20 8.46 14.62 

Prior Achievement -0.01 0.50 0.01 0.58 

 
Middle School 

  Reading Math 

  Mean SD Mean SD 

MeanGP 49.48 7.39 50.05 11.21 

SWD% 10.89 21.56 9.01 18.25 

FRL% 60.97 26.38 61.77 25.73 

ELL% 4.17 11.76 4.14 9.23 

Prior Achievement -0.01 0.6 -0.13 0.65 

 

Table 2 provides descriptive statistics for both dependent and independent variables 

included in the second stage regressions.  In general, the average meanGP was about 49, 

the average SWD% was about 8, the average FRL% was about 60, and the average 

ELL% was about 8 in elementary school and 4 in middle school.  The average prior 

achievement was slightly below its within grade standardized value
3
 with an SD across 

teachers of about 0.6.   

 We can examine the correlations of meanGP with each variable in Table 2 for 

signs that these meanGPs may be biased against teachers in certain classroom contexts.  

These results are presented in Table 3.  For the most part, the magnitudes of these 

correlations are relatively small.  Only two are above 0.30: the correlation with FRL% (r 

= -0.33) and mean prior achievement (r = 0.36) for middle school reading.  In contrast, 

because eij  is orthogonal to the collection of variables included in the regression 

                                                        
3 This is because the test scores variables were standardized using the full population of test-takers, not the 

subset included in second-stage regressions after excluding teachers with less than 15 students. 
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represented by equation 4 by definition, it will be uncorrelated with FRL%, ELL%, 

SWD% and ACHIEVE.   

 

TABLE 3.  Correlations Between MeanGP and Contextual Variables Across Teachers 

 Elementary School Middle School 

 Reading Math Reading Math 

FRL% -0.23 -0.21 -0.33 -0.27 

SWD % -0.08 0.01 -0.15 -0.05 

ELL % -0.01 0.02 -0.05 0.01 

Prior Achievement 0.24 0.18 0.36 0.20 

 

Results from Teacher-Level Regressions 

 

 Table 4 summarizes the results from estimating teacher-level regression models 

using the specification in equation 4.  To facilitate comparisons across covariates holding 

grade level and test subject constant, as well as comparisons across grade levels and test 

subjects holding the covariate constant, the value in each cell in the table indicates the 

predicted change in a teacher’s meanGP for a 1 SD increase in the value of the 

independent variable.  (The raw results for these regressions can be found in Tables A-1 

and A-2 in the appendix.)  For example, a 1 SD increase in %FRL is roughly 29 for 

elementary school teachers, and 26 for middle school teachers.  According to the 

regression results, holding constant ELL%, SWD% and ACHIEVE, the meanGP of an 

elementary school teacher with an additional 29% of students eligible for FRL services 

would be predicted to decrease by 1.5 percentiles in reading, and 2.3 percentiles in math.  

In middle school the predicted decrease in meanGP would be about the same in reading 

(1.3), but significantly lower in math (3.1).  Of the covariates included in each regression, 

FRL% consistently has the largest impact on predicted meanGPs.  In contrast, the 

marginal impact of ELL% and SWD% is much smaller.  Notice however, that the impact 

of ELL% is actually positive—a teacher’s meanGP is predicted to increase anywhere 

from 0.75 to 1.35 percentiles when the percent of ELL students increases by one SD 

(~14% in elementary school, ~10% in middle school).  
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TABLE 4.  Summary of Teacher-Level Regressions 

 Elementary School Middle School 

Covariate Reading Math Reading Math 

FRL % -1.45 -2.32 -1.30 -3.12 

ELL % +0.75 +1.35 +0.75 +0.81 

SWD % -0.55 -0.48 -0.44 -0.36 

Achieve +1.30 +0.84 +1.67 +0.19 

R
2

 
0.07 0.05 0.14 0.08 

Note: The value in each cell can be interpreted as the predicted change in a teacher’s 

meanGP for a 1 SD increase in the value of the independent variable.  All estimates were 

statistically significant at p < .01 with the exception of the two values in bold face. 

 

 One of the more interesting results from these regressions is that the marginal 

impact of students’ mean prior achievement interacts considerably by grade level and test 

subject.  The impact on predicted meanGP for a 1 SD increase in mean prior grade 

achievement is a 1.3 and 1.7 percentile increase in reading for elementary and middle 

school levels, but only 0.8 for elementary math and just 0.2 for middle school math.  

Indeed, the latter result is one of only two coefficient estimates that was not statistically 

significant.  Finally, we note that the variance in meanGP explained is quite small for all 

four models, with adjusted R
2
 of .07, .05, .14 and .08.  Only a small amount of the 

variance in meanGPs across teachers can be explained by the four variables included in 

equation 4. 

 Figure 1 and Table 5 depict the residual meanGP distributions by school level and 

test subject combination.  The variability of these residuals is larger with respect to math 

outcomes (elementary SD = 12.8, middle SD = 10.8) than reading outcomes (elementary 

SD = 8.3, middle SD = 6.8).  Notice that roughly 50% of teachers have residuals that are 

greater than 7 in absolute value for math outcomes, and greater than about 5 in absolute 

value for reading outcomes.   
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FIGURE 1.  Distributions of MeanGP Residuals by Grade Level and Test Subject 

 

TABLE 5.  Descriptive Statistics for MeanGP Residuals 

Level Subject 1
st
 Qu Median 3

rd
 Qu. SD N 

Elementary  
Reading  -5.65 -0.03 5.53 8.33 8479 

Math  -8.90 -0.14 8.63 12.79 7504 

Middle  
Reading  -4.42 -0.04 4.42 6.83 5574 

Math  -7.21 -0.02 7.29 10.75 4632 

Note: “1
st
 Qu” = “1

st
 Quartile”; “3

rd
 Qu = 3

rd
 Quartile” 

 

Comparing Teachers with Residual MeanGPs and Observed MeanGPs 

 

 The practical question is the extent to which the use of an adjusted meanGP 

would lead to significant differences in the ordering of teachers relative to the use of an 

unadjusted meanGP.  As a first look at this, we present scatterplots of meanGPs and 

residual meanGPs by grade level and test subject in Figures 2 and 3.. In general, there is a 

strong linear relationship between meanGPs and residual meanGPs, with correlations of 

about 0.96 in elementary grade reading and math and middle grade math. The lowest 

correlation is 0.92 for middle level reading.   
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FIGURE 2.  Scatterplots of Elementary Grade Teachers’ Observed MeanGPs (y-axis) 

and Residual MeanGPs (x-axis) 

 

 

FIGURE 3.  Scatterplots of Middle Grade Teachers’ Observed MeanGPs (y-axis) and 

Residual MeanGPs (x-axis) 

 

 Next we compare differences in how teachers would be classified into 

“performance” categories using either approach.  As part of Georgia’s TKES model, 

thresholds of 30, 40 and 65 are used to convert meanGP values into four categories, 

where a 1 is the lowest and is indicative of a teacher that might be deemed “ineffective,” 

a 2 represents a teacher that might ultimately be characterized as “needs development,” 

and a 3 or 4 represent teachers that might be characterized as “effective” or “exemplary,” 

respectively.  Instead of mapping these criterion-referenced thresholds directly onto the 

residual meanGP distribution, we apply a normative approach to find thresholds on the 
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residual meanGP distributions that have the same relative distances from the mean as 

those that exist on the meanGP distribution. That is, we find the z-scores that correspond 

to the meanGP thresholds of 30, 40 and 65 for each grade level and test subject and the 

convert these into the corresponding residual meanGP thresholds.  For example, recall 

that the mean and SD of meanGPs for elementary reading teachers is 49.7 and 6.7 

respectively.  To find the z-score corresponding to a meanGP of 30 for elementary 

reading, we compute z = (30- 49.7)/8.67 = -2.27.  The complete sets of z-scores 

computed in this manner are shown in Table 6 below.  One thing to notice in Table 6 is 

that even though the MeanGP classification thresholds are fixed, because the variability 

of meanGPs by grade level and test subject, the corresponding z-scores can be quite 

different.  For example, to be classified as “ineffective” in reading, a middle school 

teacher’s meanGP would have to be 2.63 SDs below average.  In contrast, to be classified 

as “ineffective” in math, a middle school teacher would only have to be 1.79 SDs below 

average.   

 

TABLE 6. Z-score thresholds that correspond to meanGP thresholds used by Georgia to 

Classify Teachers  

MeanGP 

Threshold  

Elementary School Middle School 

Reading Math Reading Math 

30 -2.27 -1.57 -2.63 -1.79 

40 -1.12 -0.81 -1.28 -0.90 

65 1.76 1.09 2.10 1.33 

 

Next we use these z-scores to derive corresponding thresholds on the residual meanGP 

distributions.  For example, with respect to elementary reading we ask what residual 

meanGP value is -2.27 SDs below average?  Since the mean of residual meanGPs is 0, 

this is akin to solving the following equation -2.27 = x/8.3.  The answer is -18.9: any 

teacher with a residual meanGP that is 18.9 percentiles below average would be in the 

lowest performance category (i.e., “ineffective”).  The same process is used for all other 

threshold values. 

Once teachers have been classified according to their location on each distribution, 

we can examine the crosstabulation to see how many teachers would shift categories 

when going from an observed meanGP to a residual meanGP.  The complete crosstabs 
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are provided in Tables 7a-10a. The number of teachers in each cell is shown as a 

percentage of the total number of teacher across all categories.  To summarize, for 

elementary grade teachers, 92.6% and 87.8% remain in the same performance category in 

reading and math respectively; for middle grade teachers, 93.8% and 89.0% remained in 

the same performance categories.  Among the small percentage of teachers that shifted 

categories, no teacher shifted more than one category in a positive or negative direction.   

However, among those teachers that switch categories, some interesting trends are 

evident and these are displayed in Tables 7b-10b.  Across grade levels and content 

domains, those teachers that move up a category when growth is evaluated on the basis of 

a residual meanGP in place of observed meanGP, tend to have large proportions of 

students who are eligible for free and reduced price lunch services and a mean level of 

prior grade test performance that is far below average.  For example, Table 8b shows that 

there were 472 teachers in elementary school grades who shifted up one category (e.g., 

from 1 to 2, 2 to 3 or 3 to 4) when examining evidence of student growth in mathematics 

on the basis of residualized meanGPs.  The prior grade achievement for the students of 

these teachers was roughly half an SD below average, and the proportion of students who 

were FRL eligible was between 85 and 91%.  By contrast, there were 442 teachers who 

shifted down by one category.  The prior grade achievement for the students of these 

teachers was typically more than half an SD above average, and the proportion of 

students who were FRL eligible was between 20 and 34%.  These results are essentially 

what one would predict on the basis of the meanGP adjustment for classroom 

composition: teachers with more challenging classroom contexts benefit relative to 

teachers with less challenging classroom contexts.   
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TABLE 7a.  Differences in Teacher Classifications from MeanGP to Residual MeanGP: 

Elementary Grade Reading 

 Residual MeanGP 

MeanGP 1 (Low) 2 3 4 (High) 

1 (Low) 0.80 0.32 0.00 0.00 

2 0.32 9.27 2.57 0.00 

3 0.00 2.21 79.36 1.16 

4 (High) 0.00 0.00 0.84 3.16 

Note: Values in cells represent percentages out of total number of teachers (N = 8,479) 

 

TABLE 7b. Characteristics of Students Associated with Teachers Who Switch 

Categories: Elementary Grade Reading 

 Shifts to Higher Classifications Shifts to Lower Classifications 

 1  2 2  3 3  4 2  1 3 2 4  3 

N 27 218 98 27 187 71 

meanGP 28.4 38.6 63.4 31.8 41.8 66.0 

FRL% 92.8 89.6 81.5 39.0 30.2 23.3 

SWD% 17.1 14.0 10.6 5.8 7.2 4.3 

ELL% 2.7 4.3 7.6 19.0 6.6 3.5 

Achieve -0.76 -0.60 -0.49 0.32 0.53 0.76 

 

TABLE 8a.  Differences in Teacher Classification from MeanGP to Residual MeanGP: 

Elementary Grade Math 

 Residual MeanGP 

MeanGP 1 (Low) 2 3 4 (High) 

1 (Low) 4.46 1.33 0.00 0.00 

2 1.32 11.90 2.84 0.00 

3 0.00 2.60 59.55 2.12 

4 (High) 0.00 0.00 1.97 11.90 

Note: Values in cells represent percentages out of total number of teachers (N = 7,504) 
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TABLE 8b. Characteristics of Students Associated with Teachers Who Switch 

Categories: Elementary Grade Math 

 Shifts to Higher Classifications Shifts to Lower Classifications 

 1  2 2  3 3  4 2  1 3 2 4  3 

N 100 213 159 99 195 148 

meanGP 28.2 38.3 63.3 32.1 42.0 67.0 

FRL% 90.7 89.2 85.1 33.8 29.5 20.3 

SWD% 7.3 6.7 6.6 7.1 8.7 7.3 

ELL% 3.5 3.4 6.0 9.8 9.6 4.6 

Achieve -0.59 -0.52 -0.44 0.43 0.53 0.82 

 

 

TABLE 9a.  Differences in Teacher Classification from MeanGP to Residual MeanGP: 

Middle School Reading 

 Residual MeanGP 

MeanGP 1 (Low) 2 3 4 (High) 

1 (Low) 0.59 0.20 0.00 0.00 

2 0.18 6.35 2.19 0.00 

3 0.00 1.99 85.88 0.99 

4 (High) 0.00 0.00 0.68 0.95 

Note: Values in cells represent percentages out of total number of teachers (N = 5,574) 
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TABLE 9b. Characteristics of Students Associated with Teachers Who Switch 

Categories: Middle School Grade Reading 

 Shifts to Higher Classifications Shifts to Lower Classifications 

 1  2 2  3 3  4 2  1 3 2 4  3 

N 11 122 55 10 111 38 

meanGP 28.1 38.6 62.8 31.9 41.9 66.7 

FRL% 89.1 88.1 76.9 45.1 37.5 18.6 

SWD% 52.3 31.3 28.5 6.3 6.4 2.7 

ELL% 1.57 4.74 8.67 20.57 1.33 0.76 

Achieve -1.17 -0.86 -0.7 0.08 0.45 1.02 

 

TABLE 10a.  Differences in Teacher Classification from MeanGP to Residual MeanGP: 

Middle Grade Math 

 Residual MeanGP 

MeanGP 1 (Low) 2 3 4 (High) 

1 (Low) 2.76 0.67 0.00 0.00 

2 0.71 11.77 2.46 0.00 

3 0.00 2.89 67.44 1.84 

4 (High) 0.00 0.00 2.40 7.06 

Note: Values in cells represent percentages out of total number of teachers (N = 4,632) 
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TABLE 10b. Characteristics of Students Associated with Teachers Who Switch 

Categories: Middle School Math 

 Shifts to Higher Classifications Shifts to Lower Classifications 

 1  2 2  3 3  4 2  1 3 2 4  3 

N 31 114 85 33 134 111 

meanGP 28.3 38.4 63.1 32.0 42.0 66.9 

FRL% 92.4 87.4 85.5 40.1 34.6 22.1 

SWD% 16.9 13.4 12.0 9.6 5.2 7.0 

ELL% 1.8 2.3 4.2 8.1 4.1 2.2 

Achieve -0.76 -0.54 -0.51 0.37 0.4 0.65 

 

 

To Adjust or Not to Adjust? 

 

 Although the practical impact of adjusting meanGPs using the second stage 

regression approach illustrated here appears to be rather small with roughly 90% of 

teachers staying in the same performance category, when applied to thousands of teachers, 

even a small impact can have meaningful implications.  For example, among the 7,504 

and 4,632 elementary and middle school teachers linked to student performance in math, 

914 and 508 respectively would have performance categories that shift by one when 

going from meanGP to adjusted meanGP.  These teachers are roughly evenly split among 

those who shift up and those that shift down.  Those that shift up tend to have students 

who are, on the whole, more challenging to teach.  Those that shift down tend to have 

students who are, on the whole, less challenging to teach.   

At first blush, there appears to be evidence that for each grade level and test 

subject, teachers in performance category 2 (“needs development”) on the basis on an 

unadjusted meanGP would be more likely to move up to category 3 (“effective”) on the 

basis of an unadjusted meanGP than they would be to move down to category 1 

(“ineffective”).  However, this can be attributed to a regression to the mean effect at work 

as the converse is also true: teachers in performance category 3 on the basis of an 

unadjusted meanGP are more likely to shift down to a category 2 on the basis of an 
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adjusted meanGP than they would be to shift up to a category 4 (“exemplary”).  The basis 

for these regression effects is the fact that the means of each distribution are closer to 

categories 2 and 3 than to 1 and 4.  It can also be argued that the shifts in classifications 

observed when shifting from unadjusted to adjusted meanGPs are likely to be far smaller 

than the shifts we would expect to observe just on the basis of chance differences in the 

student cohorts that teachers are assigned from year to year. 

 The biggest advantage of the adjusted meanGP approach is that it addresses a 

legitimate concern that teachers are not being fairly compared on the basis of the unique 

classroom contexts they may face.  Doing this adjustment as a distinct second stage at the 

teacher level after growth percentiles have been computed for student in a first stage also 

lends itself to a relatively straightforward explanation of the process.  Students are being 

compared to students with similar prior achievement, and teachers are then being 

compared to teachers with similar classroom contexts.  

 There are a number of possible challenges that need to be taken into account, and 

technical/logistical questions that would need to be answered before such an approach 

could be implemented at scale.  First, it is not immediately clear how to decide when to 

stop including contextual variables in the second stage meanGP regression.  The four 

variables included in this illustration are likely candidates, but many others would be 

possible, and the more variables that are included, the more difficult it may be to 

ascertain (and explain) just which teachers are being compared to one another.  Second, it 

is not clear how many unique regressions should be specified.  At one extreme, it would 

be possible to have as many regression models as there are unique test subjects and 

grades/courses.  At the other extreme, a single combined regression could be specified 

after combining all available meanGPs for each teacher across test subjects.  In this 

illustration, four separate regression models were specified, and each resulted in 

somewhat different adjustments for the contextual variables included (See Table 4).  It 

might prove difficult to explain, for example, why the regression adjustment for %FRL 

has two to three times the weight in math as it does for reading.  Third, a decision would 

need to made as to whether the adjustment should be allowed to vary from year to year as 

cohorts of students enter and exit the system, or whether a single adjustment should be 
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computed on the basis of an average across multiple years of data in a matter akin to the 

baseline referencing approach used to compute meanGPs.   

Finally, as noted at the outset, there is no guarantee that the adjusted meanGP 

approach is necessarily removing clear sources of bias if some of the factors included in 

the regression are in fact correlated with teaching quality.  The adjusted meanGP 

approach can certainly make it appear that there is no correlation between poverty and 

teacher effectiveness, but this may obfuscate fundamental inequities in the quality of 

teachers found in more disadvantaged schools.  Nonetheless, the empirical results 

presented here suggest that even if the adjusted approach is “overcorrecting,” this is only 

having a practical consequence for a small proportion of all teachers.   
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Appendix 

 

Table A-1.  Elementary School Teacher-Level Regression Results 

 Reading Math 

 Estimate SE t-value Estimate SE t-value 

Constant 52.59 0.33 158.89 54.71 0.48 111.75 

FRL% -0.05 0.00 -9.67 -0.08 0.01 -11.73 

ELL% 0.05 0.01 7.76 0.09 0.01 8.02 

SWD% -0.05 0.01 -5.63 0.02 0.02 1.02 

ACHIEVE 2.32 0.25 8.97 1.96 0.35 5.58 

Adj R
2
 .076   .054   

 

Table A-2.  Middle School Teacher-Level Regression Results 

 Reading Math 

 Estimate SE t-value Estimate SE t-value 

Constant 52.73 0.35 152.40 57.17 0.56 102.42 

FRL% -0.05 0.01 -8.95 -0.12 0.01 -13.30 

ELL% 0.04 0.01 4.93 0.09 0.02 5.33 

SWD% -0.02 0.00 -3.80 -0.02 0.01 -1.99 

ACHIEVE 2.78 0.26 10.84 0.29 0.37 0.80 

Adj R
2
 .144   .078   

 

 


