
2

1

4

3

6

5

7

@CSTeachingTips CSTeachingTips.org facebook.com/csteachingtips

to demonstrate debugging skills.
Find and fix a bug in code

to demonstrate code tracing ability.
Predict the output of code

to code without syntax errors.
Arrange code segments

to practice abstracting from lines of code.
Explain, compare, or critique code

to show off the breadth of their skills.
Create a portfolio

to demonstrate understanding of an algorithm.
Solve the problem by hand

to demonstrate programming fluency.
Write or modify code

CSTeachingTips.org/Tips-for-Assessing-Programming

Assessment
Tips for

Draw a
diagram as you

trace through the
lines of code!

Let’s practice
all of the skills
at the same

time!

Describe the
code to someone
who has never

seen code.

Before coding,
test your

understanding of
the algorithm.

Show your
friends and family

all that you’ve
learned!

Programming
involves a lot of
debugging! Let’s

practice!

Focus on your
code’s logic by

rearranging
these lines!

 Predict the output of code
Ask students what code will output when provided specific inputs. You can also reverse this
and ask students to provide inputs that will produce specific outputs. Ask students to
compare the output of code in different programs to help students see the differences
between similar concepts or commands. Help students understand that being able to predict
the behavior of commands in a programming language is an important prerequisite to being
able to write code. For all of these you can use them as formative assessment in class.

 Find and fix a bug in code
Ask students to identify a bug in code. You can model good debugging practices by showing
various inputs that produce correct and incorrect output. You can ask students to fix a bug
that you demonstrate with tests or ask them to find a bug. For example, you can ask
students to write a test case that will demonstrate the bug.

 Explain, compare, or critique code
Ask students to write sentences to describe code in a way that a friend that isn’t in the class
would understand. This provides students the opportunity to demonstrate that they can
abstract from individual lines of code. You can make the task a little easier by telling
students to summarize the responsibility or behavior of particular parts of the code. As an
easier to grade alternative, you can ask students to rename variables in the code.

 Arrange code segments
Give students a set of lines of code and ask students to order them to produce a program
with specific behavior. These problems are typically called “Parson’s Problems” and allow
students to reason about the logic of the code without having to worry about syntax. You
can make this more difficult by including extraneous lines of code that students don’t need
to solve the problem.

 Solve the problem by hand
Before students try to write code that solves a problem, make sure that they can solve the
problem by hand. This can involve writing test cases that show that they can predict the
expected behavior. You can also have students describe or draw the output of an algorithm.

 Create a portfolio
It is difficult to write assessments that capture the breadth of the skills students have
learned. Have students create a portfolio that shows off their work throughout the class.
This can also be motivating for students to be able to see and share what they learned in
the class! You can also give students a rubric for the skills they need to demonstrate within
a project or their portfolio.

 Write or modify code
It probably goes without saying that to assess students’ ability to write code, you could ask
them to write code. Additionally, consider providing students code that they need to modify
to change the behavior of the code. This can provide students practice reading code and
identifying the important features that determine each behavior.

7 	

6 	

5 	

4 	

2 	

1 	

3 	

2

1

4

3

6

5

7

@CSTeachingTips CSTeachingTips.org facebook.com/csteachingtips

to avoid discouraging students.
Focus on the positive

to show engineers have non-stereotypical interests.
Share a non-computing hobby

to connect with students as equals.
Move to students’ eye-level

to minimize the imbalance in power.
Re-introduce yourself to students

to be consistent with classroom norms.
Defer to the teacher

to model respect for the teacher.
Stay quiet during announcements

to help students realize that they are learning CS.
Explain what counts as CS

CSTeachingTips.org/Tips-for-Classroom-Volunteers

Volunteers
Tips for Classroom

For fun
I like to watch

movies!

I had to
solve a similar
problem last

week!

Hi, I’m …
What’s your

name? … Did I
pronounce it

correctly?

Let’s pause
to hear what
your teacher

says!

How would
you like me to

respond if
students are

off-task?

My favorite
part of my

job is…

Can you talk
me through
what your
code does?

 Share a non-computing hobby
Students might assume that all computer scientists want to program 24-hours a day and
have only stereotypical hobbies. Even if you fit these stereotypes, the field doesn’t require
these things. Make sure students see that you have other interests to help them understand
that regardless of their interests they can become computer scientists.

 Focus on the positive
Sometimes the path to becoming a computer scientist is tough. For you it might have
involved facing discrimination and a lot of hard work! Make sure to focus on the reasons
that you stuck with CS rather than sharing the challenges you overcame. Any stories that
make you seem super-human can make success in CS seem unattainable. For young
students there is no need to describe challenges you’ve faced.

 Re-introduce yourself to students
Ask the classroom teacher to introduce you and what you’ll be doing in the class. When you
work with students individually re-introduce yourself. This provides the opportunity to ask
for the student’s name and show interest in them as a person by making sure that you’re
pronouncing their name correctly. Don’t hesitate to ask them to say their name again or ask
how their name is spelled. But don’t describe their name as unusual or difficult to say!

 Move to students’ eye-level
As an adult visitor to their class, students will likely find you intimidating. If you stand while
you help students, you might unintentionally tower over them and reinforce that
intimidation. Instead get at students’ eye-level or lower. Make sure that you give students
suggestions and never touch their keyboard or mouse! Try to remember that coding can be
really difficult for beginners and avoid saying things like “this is easy.”

 Stay quiet during announcements
It is likely that the teacher will need to make announcements during the class. When this
happens, do not quietly continue your conversation with students. It is natural to want to
finish your conversation with the students, but stop talking so that you and all of the
students can listen to the teacher. Make sure to stop talking even if not all of the students
stop talking to listen.

 Defer to the teacher
It is likely that students will need to be redirected if they get off-task. Don’t assume kids
who get off-task are bad kids or not interested in CS. Check with the teacher before class to
ask how they would like you to interact with students who are off-task. They might suggest
that you introduce yourself and ask “What are you working on?”

 Explain what counts as CS
Students might not realize that what they are doing counts as programming. This might be
particularly true if the programming environment looks like a game. Explain how what
they’re doing relates to professional programming so that the activity can build their
confidence in their ability to do CS.

7 	

6 	

5 	

4 	

2 	

1 	

3 	

2

1

4

3

6

5

7

@CSTeachingTips CSTeachingTips.org facebook.com/csteachingtips

to show that everyone makes mistakes.
Embrace your mistakes

to set the expectations that everyone will need help.
Remind students about resources

to help all students develop a peer network.
Structure collaboration

to reduce power differentials and encourage attendance.
Hold help sessions in public places

to provide an anonymous Q&A forum.
Use Piazza for Q&A

to help students reflect on their learning process.
Introduce the growth mindset

to communicate you care and believe they can learn.
Email students with low grades

CSTeachingTips.org/Tips-for-Encouraging-Help-Seeking

Help Seeking
Tips for Encouraging

I hope you’ll
come to my office
hours tomorrow

at …

I noticed you
didn’t turn in the
last homework
assignment.

I hope you’ll
stop by office
hours in the
computer lab

tomorrow.

You might be
afraid to make
mistakes, but
mistakes are
important!

You can
always post your

questions on
Piazza!

Thanks for
catching my

mistake!

You’ll work with
your assigned

partner in class
today.

 Remind students about resources
Consider reminding students about opportunities for help at the beginning or end of every
lecture. It takes only a few seconds and can increase attendance and make up for the fact
that students often forget the timing and location of help.

 Embrace your mistakes
When you make a mistake in class, acknowledge it and try to not appear embarrassed.
These situations provide an opportunity to model that you can learn from mistakes and they
are a normal part of computer science and the learning process.

 Hold help sessions in public places
Many students report that going to a faculty member’s office for help is intimidating. If you
hold office hours in a public space like a computer lab, students can work on their
homework and get help when needed. A lab can also provide more space so you can rotate
around the room helping students. It can also be helpful to be able to leave at the end of
your office hours without having to kick students out of your office.

 Structure collaboration
Some of your students will start the class with a strong peer-support network. To ensure
that all students have access to an informal support network, provide structured
collaboration opportunities where students can get to know each other. For example, you
can assign groups or require interaction between students in class. I also encourage
students to exchange contact information to try to remove the social stigma of asking their
peers for their contact information.

 Introduce the growth mindset
Research by Carol Dweck and other social psychologists shows that students pursue more
effective learning strategies when they see intellectual abilities as malleable (i.e., have a
growth mindset) rather than innate (i.e., have a fixed mindset). Students with a growth
mindset are more willing to learn from mistakes and challenge themselves. It can be helpful
to tell students about this research to encourage them to adopt a growth mindset and to
acknowledge that a fear of “looking stupid” is common.

 Use Piazza for Q&A
The website Piazza.com offers a Q&A forum with minimal overhead. Students can post
questions anonymously and I am often surprised how many students take advantage of this
opportunity. Additionally, students can contribute answers to questions and instructors can
easily see what questions haven’t been answered.

 Email students with low grades
Consider emailing students who received a low grade on an exam or homework assignment.
Your email can encourage the student to make use of available resources. It can be helpful
to express confidence in your student’s ability to learn to motivate them and decrease the
stigma of poor performance. You can use mail merge to save time without the email
appearing impersonal.

7 	

6 	

5 	

4 	

2 	

1 	

3 	

2

1

4

3

6

5

7

@CSTeachingTips CSTeachingTips.org facebook.com/csteachingtips

to help students see computing around them.
Point out products of CS

to connect programming with students’ everyday life.
Describe programs as instructions

to demystify terms describing CS jobs.
Introduce synonyms for CS

to encourage students to embrace mistakes.
Explain that bugs are expected

to show problem solving strategies.
Model programming

to dispel stereotypes about CS.
Promote collaboration & creativity

to help students see how they can continue learning CS.
Publicize resources for learning CS

CSTeachingTips.org/Tips-for-Introducing-Computing

Introducing CS
Tips for

Programming
is just bossing
a computer

around!

If you want
to learn more
CS, you can

find resources
at …

Even for
professional

programmers,
programs never

work at first!

You’ll work
together today
like computer
scientists do!

That didn’t
work like I

expected! What
could I try

next?

Traffic
lights are

controlled by
computer
programs!

There are
lots of names
to describe
doing CS!

 Describe programs as instructions

Explain that programming languages are just languages that the computer understands and
programs are just instructions for the computer to follow. This can help students see that
programming relates to their experiences giving and receiving instructions.

 Point out products of CS

Computer scientists are involved in the creation of most everyday objects. Students might
know that computer scientists make apps, but might not realize that computer science is
behind lots of everyday objects (e.g. traffic lights, microwaves, cash registers). You can
have students list things that are important to them and discuss how those things rely on
computers (and therefore computer science).

 Explain that bugs are expected

School sometimes reinforces the idea that mistakes are bad. Instead, focus on how mistakes
are part of the learning process and that this is particularly true in programming. Explain
that when professional programmers write code, it rarely works the first time and that the
most important thing is continuing to try things even if they don’t work at first. Give
examples of the errors that students might see to help them decode the error message.
Explain that nothing they do will damage the computer.

 Introduce synonyms for CS

Students have likely heard a lot of terms about CS: programmer, hacker, software engineer,
coder, computer scientist, or developer. To demystify CS, explain that the differences
between these terms aren’t particularly important. Help students see that CS has a lot of
specialties with different balances of programming, design, math, and problem solving.

 Promote collaboration and creativity

Try to challenge stereotypes of CS as solitary and boring by providing opportunities for
collaboration and creativity. Tell students that computer scientists always work in teams to
solve big problems. Consider looking up the number of employees at a big tech company
students have heard of to illustrate that computer scientists work together. Explain that
computer scientists use creativity when they’re inventing new products and when they’re
coming up with creative ways to solve problems.

 Model programming

When students are new to programming, they don’t know what to expect. Display your
screen while programming to model the process of tinkering, reading error messages,
making and fixing mistakes, and problem solving within a programming environment.
Students likely won’t be able to replicate all of the things you demonstrated, but it can be
helpful for them to see what activities programming involves.

 Publicize resources for learning CS

Students might not know how they can pursue more CS learning outside of class. Give
examples of what they might want to learn to make and help them identify resources for
learning CS online. There are lots of free resources available online!

7

6

5

4

2

1

3

2

1

4

3

6

5

7

@CSTeachingTips CSTeachingTips.org facebook.com/csteachingtips

to avoid “just one more thing” negotiations.
Count down before breaks

to ensure students listen to announcements.
Request eyes, ears, & monitors off

to enable students to get started quickly.
Set the default homepage

to help students understand computers.
Explain food and drink restrictions

to motivate students and build community.
Facilitate showing off work

to encourage sustainable ergonomics.
Schedule breaks for stretching

to encourage collaboration and minimize roadblocks.
Encourage asking peers questions

CSTeachingTips.org/Tips-for-lab-rules

CS Lab Rules
Tips for

I have an
announcement.

Please turn
off your

monitors.

Ask three
before me!

We have to be
careful because
water could ruin
the computer.

Give your eyes
a rest and look

around the
room!

In 30 minutes
we’ll do a gallery

walk to share
our work!

We will have
monitors off in
30 seconds.

Type in your
login after you
open your web

browser!

 Request eyes and ears, and monitors off

It is common to ask students for “eyes and ears” before an announcement. Modify this to
include “monitors off” so that students will focus on you during the announcement and not
their computer. Don’t start your announcement until everyone has turned off their monitor.
If possible, make announcements at a location in the classroom where you can see all of the
students’ monitors.

 Count down before breaks

Ideally students will be focused on problem solving when they are in the computer lab.
Show respect for students and their problem solving by giving them a warning before you
ask them to stop working. You can count down from 5 or 10 before stopping the class.
When possible give students a 5-minute warning before the end of class and a 30-second
warning before an announcement. These strategies can help reduce students’ negotiations
of needing to do “one more thing.”

 Explain food and drink restrictions

When students learn to program, they are often worried about breaking something.
Explaining what can and can’t break the computer can be empowering for students. Also,
students are often allowed to drink water during class, so they might not understand why
they can’t have any food or drinks around the computers.

 Set the default homepage

To enable students to get started quickly when they come to class, set the default
homepage for their browser to point to a webpage they’ll need to access during class. If you
have multiple sites they’ll use, consider having a shortcut for each one on the desktop.

 Schedule breaks for stretching

Help students develop good habits for computer use by setting stretch breaks at regular
intervals. You can teach students the rule 20-20-20, which is that every 20 minutes you
should take a break of at least 20 seconds by looking at least 20 feet away.

 Facilitate showing off work

Try having your students do a “gallery walk.” You can have students display their work on
their computer monitor and then go around the classroom to look at the work of their peers.
If you want students to have the opportunity to explain their work to their peers, have
students born in an odd month start by walking around and then swap. This practice can
help build community in the classroom. It can also increase students' motivation to get to
see the work of their peers.

 Encourage asking peers questions

Many classrooms use the phrase “Three before me” to set the expectations that students
will ask 3 other students before raising their hand to ask a teacher. This can be helpful for
reducing the number of administrative questions that you have to answer and can facilitate
students working together. Before helping a student who raises their hand, ask them which
of their peers they had already asked.

7

6

5

4

2

1

3

2

1

4

3

6

5

7

@CSTeachingTips CSTeachingTips.org facebook.com/csteachingtips

to help students understand the relevance.
Motivate lecture content

to increase students’ learning and engagement.
Integrate active learning

to have a chance to clarify unclear content.
Encourage questions

to help students identify the important ideas.
Make learning goals explicit

to adapt to their needs & show that you care.
Ask students for feedback

to help students identify what they understand.
Require students to self-assess

to help students understand your teaching strategies.
Explain your pedagogical moves

CSTeachingTips.org/Tips-for-Lecturing

Lecturing
Tips for

Discuss the
question with
your partner.

I’m providing
this example to
help motivate

today’s content.

By the end of
lecture you should

be able to …

See if you can
apply this idea to
the problem in
your handout.

Thumbs up or
down – did that

make sense?

This skill is
needed to solve
problems like …

What was
unclear?

What questions
do you have?

 Integrate active learning

There is often pressure to cover a lot of content in lecture. However, it is unrealistic for
students to sustain their attention throughout an entire lecture period. Students learn best
when they can engage with the content rather than just listening! During the lecture engage
your students in problem solving, discussing or debating content, practicing skills, or
presenting or summarizing information. Even a few 2-minute breaks during class increases
students’ learning and retention! Not convinced? Read: tinyurl.com/activeLearningNYT

 Motivate lecture content

We may be motivated by the lecture content independent of any practical applications. Help
motivate students by explaining the applicability of lecture topics both inside and outside of
the course. Assume that students will have diverse interests and try to provide variation
when motivating topics. Try starting class with an example of CS from current events.

 Make learning goals explicit

Novices often have difficulty seeing the forest for the trees. We can help our students see
the central ideas by making our learning goals and expectations for them explicit.
Documenting our learning goals can also be helpful for students when they are studying.

 Encourage questions

By encouraging students to ask questions during lecture you can gain insights into parts of
your explanation that were unclear and better understand what students find difficult about
the topic. Ask students “What questions do you have?” rather than “Do you have any
questions?” to set the expectation that questions are part of the learning process.

 Require students to self-assess

During lecture provide opportunities for students to assess their understanding. You can ask
students to re-explain a topic to a neighbor or solve a problem that requires them to apply a
new idea or skill. Students might otherwise assume that they understand the content better
than they do. This can help them identify what they don’t understand and help develop their
metacognitive skills. You can circulate and answer questions that come up.

 Ask students for feedback

Solicit student feedback to communicate to students that you want to be as effective helping
them learn as possible. Ask for students’ feedback during lecture (e.g., asking for thumbs
up/down if they understood an explanation) and in written form throughout the semester.
Whenever you receive feedback make sure you summarize the feedback for students and
explain what changes you will or won’t be making based upon their feedback.

 Explain your pedagogical moves

Some of your teaching practices (e.g., asking students to talk to a neighbor) might make
them uncomfortable. Explain your pedagogical moves so that students understand your
intentions and teaching strategies. For example, if you do not allow laptops in class, share
the research finding that when students use a computer during class they learn and retain
less, as do the students around them.

7

6

5

4

2

1

3

2

1

4

3

6

5

7

@CSTeachingTips CSTeachingTips.org facebook.com/csteachingtips

to avoid unnecessary pair negotiations.
Assign roles and computers

to motivate students to work together.
Explain pair programming goals

to encourage productive pairing interactions.
Name common behaviors

to avoid one student dominating the collaboration.
Pair students with similar skills

to support students in working together.
Only interact with pairs

to facilitate role-switching compliance.
Automate role-switching & timing

to provide students autonomy and reduce frustration.
Include buddy programming

CSTeachingTips.org/Tips-for-Pair-Programming

Pair Programming
Tips for

Pair programming
can help you learn
more efficiently.

In 30 minutes
we’ll switch to

buddy
programming!

Find your
assigned pair
programming

buddy!

When the music
plays – stand up
and switch roles.

Have you and
your partner

discussed your
question?

The partner on
the left will be the

navigator first.

Navigators: are
you offering

suggestions or
commands?

 Explain pair programming goals
Pair programming involves one student, the “driver,” using the keyboard and mouse while
the other student, the “navigator,” provides directions and support. Pair programming is
used in industry because it helps programmers learn from each other and write code with
fewer bugs. It is also helpful for demonstrating that programming is a collaborative activity.
Have students watch the NC State video: tinyurl.com/PairProgrammingVideo

 Assign roles and computers
Students tend to prefer to be the driver. Assign which student will start in each role to avoid
pairs beginning with a difficult negotiation. Throughout class, ensure that students’ chairs
are positioned so that they can both see the computer screen. If applicable, specify which
computer the students should use to avoid a negotiation about this.

 Pair students with similar skills
Research suggests that students benefit most when they are paired with a student with
similar skills. This isn’t always possible, but significant gaps in skills sometimes lead to the
weaker student only sitting and watching or mindlessly following their partner’s commands.

 Name common behaviors
Model positive and negative pair programming behavior by having a student pretend to pair
program with you. After each of these role-plays, have students identify the positive and
negative behaviors. Ask students “How do you think my partner felt when that happened?”
to help students imagine the experience of their partner. It is helpful to model asking a
partner for their opinion and checking if they understand. It can be helpful to refer back to a
relevant role-play if students are stealing the mouse or bossing their partner around.

 Automate role-switching & timing
Create a Scratch project to play music to indicate that students should switch roles. If
students are physically able, have them stand up and switch seats when they switch roles. If
a student won’t relinquish the driver role, their partner will be standing up as they wait for
them, which allows you to intervene. If students work in a group of three, have all students
rotate seats every time to make it easier for them to track the rotation of roles.

 Only interact with pairs
When a student asks a question, make sure you address your answer to both of the
students and take time to check that both students understand. If one student understands
and the other student doesn’t, stay with the pair while one student explains it to the other
one. This shows that explaining the idea is a learning opportunity and not to save you time.

 Include buddy programming
At Harvey Mudd College we call solo-programming “Buddy Programming” because students
are expected to continue to engage with their partner as they work. Sometimes pair
programming can help establish this collaborative relationship. Tell students exactly how
long they will be pair programming so you don’t have students ask “When do we get to
work by ourselves.” They might not realize how this comment might make their partner feel.

7

6

5

4

2

1

3

2

1

4

3

6

5

7

@CSTeachingTips CSTeachingTips.org facebook.com/csteachingtips

to make sure all students feel they belong.
Make it welcoming

to help dispel myths about CS and who does CS.
Educate counselors and teachers

to show students the variety of assignments.
Show off student projects

to have students hear from students that CS is cool.
Have students promote your class

to avoid students opting out without trying it.
Make CS required for all

to expand participation to students who might not enroll.
Recruit friend groups

to develop strategies for supporting students’ success.
Use CSTeachingTips.org

CSTeachingTips.org/Tips-for-Recruitment-in-HS

Recruitment
Tips for HS student

All students can
take CS! It isn’t
just for “nerds”

I’m here to
help you be
successful in
this class!

Who wants to
go talk about CS
in the 9th grade

class?

I think you’ll
like CS. You could
take it with your

friends!

CS is helpful
to a range
of jobs!

We are happy
you decided to
take CS! You
belong here!

Look at what
students in my
CS class made!

 Educate counselors and teachers

Other adults at the school often have a lot of influence over students. Make sure that the
counselors know that you want all students in your CS classes. Show them examples of your
students’ assignments to show them that CS can be engaging. Help counselors and other
teachers recognize that there are stereotypes that discourage students from pursuing CS.
Dispel these stereotypes so that other adults encourage all students to try CS. Use this
“Critical Listening Guide” (www.ncwit.org/criticallistening) to identify and address counter-
productive diversity narratives like “Women need to learn to be more confident” and
“Women are such great collaborators.”

 Make it welcoming

Ensure that the climate in the classroom is welcoming of all students. This can include
providing students opportunities to discuss ideas with their peers, making sure that students
know how and where they can get help, and not equating experience with “smart.”

 Have students promote your class

Have students go to other classes to educate students about what they could learn in the CS
class. Other students can be the most compelling spokespeople. Make sure that your
students know to avoid reinforcing stereotypes about CS.

 Show off student projects

Help students visualize what they would do and learn by showing off your current students’
work. Look for opportunities to highlight their work across the school. For example, consider
showing off work at back to school nights, science fairs, or even set up a table at sporting
events.

 Recruit friend groups

To avoid students being “the only” in a CS class or not having any friends in the class,
recruit whole friend groups to take the class. Use this as a strategy to get students to enroll
in your class who might otherwise opt out. Try to identify students who might influence their
friends to try the class.

 Make CS required for all

To avoid self-selection, have all students at the school try CS. This can help provide all
students a background in CS so that they can see if it is something they like and might want
to pursue. Students who don’t fit the stereotype of a typical computer scientist often opt out
of trying CS even though they might really like it! Try to focus your efforts at your school
toward programs that serve all students.

 Use CSTeachingTips.org

Seek out resources to improve your students’ learning experience. We know this is a
shameless plug, but check out resources from CSTeachingTips.org to learn about common
misconceptions, strategies for engaging your students, and reminders of strategies to make
your classroom inclusive.

7

6

5

4

2

1

3

2

1

4

3

6

5

7

@CSTeachingTips CSTeachingTips.org facebook.com/csteachingtips

to mitigate the effect of unconscious bias.
Grade anonymously

to avoid tacit assumptions within your class.
Make your expectations explicit

to enable you to engage all students equally.
Learn students’ names

to ensure students are held to the same standards.
Establish clear policies

to educate your students and show you care.
Teach students about bias

to mitigate and monitor the impact of your biases.
Acknowledge & manage your bias

to learn how you can create a supportive enviroment.
Listen to students’ experiences

CSTeachingTips.org/Tips-for-Reducing-Bias

Reducing Bias
Tips for

Start homework
early so you have
time to get help!

What in your
classes makes you

feel like you
belong?

Ill students
receive a two-day

extension.

Am I spending
more time with

particular
students?

Everyone has
unconscious,
unintentional

biases!

Don’t put your
name in the
homework!

That’s a great
question ____!

 Make your expectations explicit

We often have tacit assumptions about what students should do to be successful in our
classes: take notes during lecture, ask questions, get started on the homework early, come
to office hours, and read the book. These things might be different in each of their classes
and some students might be better prepared to guess what the right things are. Help
remove the guesswork for students by making these expectations of their behavior explicit.

 Grade anonymously

Research shows that people evaluate the same resume more favorably if it has a man’s
name than a woman’s name. We are surrounded by stereotypes, and research studies show
that these unconscious biases can shape our evaluations of others. If possible, remove
information about the identity of the student when evaluating their work. I have students
write their names on the back page of the exam. I could look at their name, but I don’t.

 Establish clear policies

When students ask for exceptions for extenuating circumstances we have to make
subjective decisions regarding their situation. Write down your plans for these situations to
ensure all students are held to the same policies. When new circumstances arise add them
to your plans because having them written down will help you improve your consistency.

 Learn students’ names

Knowing a student’s name allows you to better connect with them. However, it is normal to
learn some students’ names more quickly than others. Make an effort to learn students’
names to avoid unequal connections to your students. It can be helpful to video students
saying their names so that you can practice the correct pronunciation. Checking that you are
pronouncing their name correctly is an important way to show you value them as a person.

 Acknowledge and manage your biases

We often conflate implicit bias with explicit sexism, racism, classism, ableism, homophobia,
or transphobia. While we wouldn’t identify ourselves as sexist, we have to recognize that
some of our actions may be unconsciously based upon our biased assumptions about the
abilities, interests, or needs of girls or women. It is important to become reflective about
your behavior to identify ways in which your expectations of, or interactions with, people
might conform to stereotypes you unconsciously hold about one of their identities. Consider
adopting a system where you randomize the order in which you call on students.

 Teach students about bias

Help educate students about implicit bias. For example, when you introduce your plans for
anonymous grading you can explain the underlying research about implicit bias. Introducing
implicit bias research also communicates to students your goal to treat all students fairly.

 Listen to students’ experiences

Learn from students’ stories about their interactions with their instructors and peers. When
you realize you have contributed to a student’s negative experience: apologize, identify what
you’ll do differently next time, and don’t try to justify your behavior.

7

6

5

4

2

1

3

2

1

4

3

6

5

7

@CSTeachingTips CSTeachingTips.org facebook.com/csteachingtips

to help students debug code by acting it out.
Read code aloud

to build students’ confidence for future learning.
Emphasize Scratch is REAL coding

to help students reason about sequencing.
Add sound blocks to code

to make creating new variables more intuitive.
Use implicit then explicit variables

to use blocks that execute sequentially.
Use “& wait” blocks

to help students distinguish easily confused blocks.
Contrast set and change blocks

to let them apply abstraction to working code.
Let students write “bad” code

CSTeachingTips.org/Tips-for-Teaching-Scratch

Scratch
Tips for

Scratch is
similar to other
programming
languages.

Now that
your code works,
could you use a
repeat to make

it simpler?

Try setting
or changing
the volume
variable.

Set ignores
the old value.

Change modifies
the old value.

Remember to
use the broadcast
and wait block.

Read the
code aloud and
pretend to be

the cat!

Add different
play note blocks
to see how your

code works.

 Emphasize Scratch is REAL coding

Students often think that Scratch is a computer game and don’t realize that Scratch is a tool
to learn computer programming. We often want students to both learn these computer-
programming skills and develop their confidence that they could learn more. To achieve this,
it is important to emphasize that Scratch is a programming language and not a game!

 Read code aloud

A common strategy in debugging for kids and adults is to read through and trace on paper
what the code would do. To support this it is important to require students to have paper
and a pencil out when they are working. When working with sprites in Scratch, you can
have one student read the code and another one act out what the sprite would do either by
moving around the classroom or drawing on paper.

 Use implicit then explicit variables

Creating new variables in Scratch (i.e. explicit variables) can be a conceptual leap for
students. To help ease this transition, help students see that they’re frequently using implicit
variables such as coordinates, direction, size, volume, instrument, tempo, pen size, and pen
color. Help students see that they are using variables when using these implicit variables!

 Add sound blocks to code

Students often use an if block when they mean to use a forever-if block. Help students
recognize this by saying “if you put a play-note block in the if, how many times would you
hear it?” This style of prompt can be a great hint for students and you can use play-note
and say blocks to help visualize program execution. Some programming languages use
“print-statements” as a similar strategy.

 Contrast set and change blocks

Students often use a set block when they want a change block and vice versa. I use the
phrase “Set ignores the variable’s old value. Change modifies the variable’s old value.” When
students make the mistake of using the wrong block, I’ll ask “do you want to set the
variable or change it?” and/or ask them “what’s the difference between set and change?”

 Use “& wait” blocks

Students can get confused when they use multiple play-sound blocks in a row because if
you don’t use the play-sound-until-done blocks the sounds start one after another before
the previous sound can finish playing. Students can also get confused when broadcasting
messages because there are broadcast blocks and broadcast-and-wait blocks. I recommend
students use “until done” or “and wait” so that their blocks of code execute sequentially.

 Let students write “bad” code

Even after students have learned repeat I find that they’ll solve problems by copying and
pasting code rather than using repeat. I find students are most efficient solving the problem
if they get the code working without repeat before I suggest, “could you use repeat to make
this code simpler?” My hypothesis is that as students are learning more abstract tools like
repeat, it can be helpful to be able to see the working code without the more abstract tool.

7

6

5

4

2

1

3

1.  Introduce	yourself.	
2.  Ask	the	student	to	describe	their	homework	problem.		
3.  Ask	the	student	to	describe	what	they	want	help	with.	

•  If	they	don’t	know	how	to	get	started,	ask	them	to	describe	
the	problem	in	detail:	
•  What	are	the	goals	of	the	problem?		
•  What	are	the	inputs?		
•  What	are	the	outputs?	
•  What	is	their	relaAonship?	
•  Can	we	solve	a	small	example	by	hand?		
•  Is	there	a	part	of	the	problem	that	they	could	write	code	for?		

•  (and	worry	about	the	rest	later?)		
•  Can	you	describe	the	algorithm	in	words?		
	

•  If	they	have	a	syntax	error,	ask	them:	
•  What	line	is	the	syntax	error	is	on?	
•  What	does	the	text	of	the	error	mean?	
•  What	does	the	internet	suggest	about	how	to	fix	this	error?	
•  What	have	they	tried	to	fix	this	error?		
	

•  If	their	code	doesn’t	work,	ask	them:	
•  What	evidence	do	we	have	that	the	code	doesn’t	work?		
•  What	test	case	doesn’t	work	and	what	incorrect	behavior	or	output	results?	
•  Could	we	come	up	with	a	simpler	example	that	demonstrates	the	error?		
•  What	lines	of	code	might	be	producing	the	bug?		
•  Why	hypotheses	do	we	have	for	what	might	be	causing	the	problem?	
•  How	can	we	test	these	hypotheses?		

•  (e.g.	wriAng	new	test	cases,	adding	print	statements,	using	a	debugger)	
•  Could	we	walk	through	an	example	that	doesn’t	work:	by	hand?	with	a	debugger?		

	
	
	
	

For	Tutors	

